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Overview of this chapter

We introduce resource sensitive logics, in particular based on
linear logic.

We propose a resource sensitive version of the bringing it about
logic BIAT (based on the four principles that we discussed).
[PT14, PT15]

We show a few examples of modelling resource sensitive
actions.

We approach order-sensitivity: sequences of actions, priority,
etc.

Conclusions.
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Resource sensitive-agency

Resource-sensitive agency:

Actions require resources to be performed,

e.g. buying/selling an item, moving in an environment,
transforming an environment, using a tool, etc.

In fact, any action in principle requires spending resources to
achieve something.

In case we need to model explicitly the resources used to
perform the action, one strategy is to replace classical logic with
resource sensitive logics.
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Classical logic and naïve specification of actions

Specifying “hammering”: if I place a nail (N) and I provide the
right force (F), then I can drive a nail (D) with the hammer.

So assume:

` N ∧ F → D

In classical logic: we cannot say that one hammering action is
about one nail and one hammer, that let me drive in one nail:

` N ∧ F → D
` N ∧ F → D ∧ . . . ∧ D

Why?
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Sequent calculi
Sequent calculi were introduced by Gentzen, 1937 to study the proof
theory of logics (in particular, of classical and intuitionistic logic).

A sequent is an expression of the form:

Γ ` ∆

Where Γ are the hypotheses of the sequent and ∆ are the
conclusions.

The intuitive meaning of the sequent is:

γ1 and γ2 · · · and γm entail δ1 or δ2 or · · · or δm

A logic is then defined by means of two types of rules:

Structural Rules: determine the structure of Γ and ∆ (e.g. a set,
a multiset, a list, a tree, etc.)

Logical Rules: determine the behaviour of logical connectives
(e.g. they distinguish the conjunction from the disjunction).
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Sequent calculi and resource-sensitivity
The structural rules of contraction, weakening, and exchange define
how to deal with formulas in a proof:

Γ,A ,A , ` ∆
(C)

Γ,A ` ∆
Γ ` ∆ (W)

Γ,A ` ∆
Γ,A ,B , Γ′ ` ∆

(E)
Γ,B ,A , Γ′ ` ∆

I.e. W , C, and E entail that Γ and ∆ are sets.

W , C, and E determine also the behaviour of logical connectives
(Girard, 1987).

In particular they make the following two presentations of logical rules
are equivalent:

Γ ` A ∆ ` B
∧

Γ,∆ ` A ∧ B
Γ ` A Γ ` B

∧
Γ ` A ∧ B

(multiplicative and additive presentation)

By rejecting structural rules, we are lead to define two
conjunctions with different behaviour: multiplying contexts (⊗) or
identifying them (&).
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Structural rules
Unrestricted use of W and C is problematic for modelling the agency:

Identifying tokens of actions (Contraction)

E.g.: ` N → N ∧ N
If I place a nail one, then I place it twice

Introducing arbitrary actions (Weakening)

E.g.: ` N ∧ C → N
If I can place a nail, I can place it in any case (regardless of the

context C)

Insensitivity to the order of action (Exchange)

E.g.: ` N ∧ F → F ∧ N
If I can place a nail and then apply a force, I can apply a force

and then place a nail.

Instantiating classical propositional reasoning in terms of actions
leads to unintuitive outcomes.
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An example from Girard 1995

Consider a petrol engine, in which petrol P causes the motion M:

P ` M

Weakening would enable any motion to be caused by a petrol engine:

` M (W)
P ` M

Contraction makes miracles, free motion:

P ` P P ` M
P,P ` P ∧M

(C)
P ` P ∧M
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Basic observations

Need for weak propositional logics (substructural logics, i.e. control
Weakening and Contraction) to handle resource-sensitive reasoning,
e.g.:

Bunched Implication (O’Hearn, Pym 1999);

Relevant Logics (Anderson et Al, 1992)

Linear Logic (Girard 1987).

Modal logics are the preferred tools to deal with agency and action,
and more generally with propositional attitudes, e.g.:

Group beliefs (Lismont, Mongin 1994, Porello 2018);

Coalitional powers (Pauly 2002);

Actual agency (Kanger, Belnap, and others).

We will combine both:
Linear Logic with weak (non-normal) modalities.
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Resource-sensitive logics of agency

We propose:

Minimal modal Linear logic:

Semantics
Hilbert-style axiomatisation
Sequent calculus
Cut-elimination
PSPACE membership of proof-search.

Modal Linear Logic of Agency: extend the minimal modal linear
logic by providing a resource-sensitive version of the core
principles of agency.

Case study: Resource-sensitive agency instantiated by the use
of artefacts (hammers, screwdrivers, ..., web services, ...)
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Our propositional language

A fragment of (Intuitionistic) Linear Logic, LILL, defined by the BNF

A ::= 1 | p | A ⊗ A | A & A | A ( A

where p ∈ Atom.
A ⊗ B: A and B (“tensor”; multiplicative (or intensional) conjunction)
A & B: A and B (“with”; additive (or extensional) conjunction)
A ( B: A implies B (“lollipop”; linear implication)

Let ⊥ ∈ Atom a designated atom to mean contradiction.

Negation defined: ∼ A ≡ A ( ⊥.

Other connectives in full Linear Logic: O; ⊕; !; ?; 0, >.
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The meaning of linear logic connectives: A menu

Price: 27 euros,

Appetiser: Prosciutto e melone/fichi (depending on season)

Primo: Spaghetti/Gnocchi,

Drink: Water (as much as you like)

Pz ( ((P ⊗M) ⊕ (P ⊗ F)) ⊗ (S & G)⊗!W

A ( B: consuming one A , you get one B;

A ⊗ B: you have one copy of A and one of B.
E.g. A ⊗ B 0 A : in order to sell A and B, we need someone who
buys both A and B.

A ⊕ B: you have one of the two but you cannot chose;

A & B: you have one of the two and you can chose;

!A : use A ad libitum (! reintroduce structural rules)
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Models for ILL: formally

A Kripke resource model [Urquhart 1972] is a structure
M = (M,e, ◦,≺,V), where:

(M,e, ◦) is a commutative monoid:

M is a set of resources;
◦ is associative and commutative;
m ◦ e = m.

≺ is a preorder (reflexive, transitive) on M;

V : Atom→ P(M);

if m ≺ n, and m′ ≺ n′, then m ◦m′ ≺ n ◦ n′ (bifunctoriality);

if m ∈ V(p) and n ≺ m then n ∈ V(p) (heredity).
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Hierarchy of logics wrt. resource-sensitivity
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MILL: a minimal modal extension of ILL

The language of MILL, LMILL, then becomes

A ::= 1 | p | A ⊗ A | A ( A | �A where p ∈ Atom.

We add a neighborhood function [Chellas 1980] to Kripke resource
models:

N : M → P(P(M))

Truth condition:

m |= �A iff ||A || ∈ N(m)

m |= A ( B iff ∀n, if n |= A , then m ◦ n |= B.

m |= A ⊗ B iff ∃m1, m2, s.t. m1 ◦m2 ≺ m, m1 |= A ,
m2 |= B.

m |= A & B iff m |= A and m |= B.
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Definition

A modal Kripke resource model is a structureM = (M,e, ◦,≺,N,V)
such that:

(M,e, ◦,≺) is a Kripke resource frame;

N is a neighborhood function such that:

if X ∈ N(m) and n ≺ m then X ∈ N(n)

V is a valuation function.

It is readily checked every A ∈ LMILL satisfies heredity:

Proposition
For every formula A, if m |= A and m ≺ m′, then m′ |= A.
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Sequent calculus `

Γ and Γ′ are finite multisets of formulas. (Exchange rule holds
implicitly.)

ax
A ` A

Γ,A ` C Γ′ ` A
cut

Γ, Γ′ ` C

Γ,A ,B ` C
⊗L

Γ,A ⊗ B ` C
Γ ` A Γ′ ` B

⊗R
Γ, Γ′ ` A ⊗ B

Γ ` A Γ ` B
Γ ` ANB

Γ ` A Γ′,B ` C
(L

Γ′, Γ,A ( B ` C
Γ,A ` B

(R
Γ ` A ( B

Γ ` C 1L
Γ,1 ` C

1R
` 1

A ` B B ` A �(re)
�A ` �B
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Hilbert system `H

A ( A

(A ( B)( ((B ( C)( (A ( C))

A ( (B ( C)( (B ( (A ( C))

A ( (B ( A ⊗ B)

A ( (B ( C)( A ⊗ B ( C

1

1( (A ( A)

(-rule: if `H A , `H A ( B then `H B

�(re): if `H A ( B and `H B ( A then `H �A ( �B
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Theoretical results I

Theorem
Correspondences

if |= Γ∗ ( A, then Γ ` A (completeness of `)

Γ ` A iff Γ `H A (equivalence of Sequents and Hilbert)

if Γ `H A, then |= Γ∗ ( A (soundness of `H)

Where Γ? = ϕ1 ⊗ · · · ⊗ ϕn, for ϕi ∈ Γ.
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Theoretical results II

Theorem

Cut elimination holds for MILL.

I.e. there exists a normal form of proofs of the sequent calculus.

E.g., proof by rediuction steps:

B ` C C ` B �(re)
�B ` �C

C ` D D ` C �(re)
�C ` �D cut

�B ` �D

is reduced by replacing the cut on �C by two “lesser cuts” on C.

B ` C C ` D cut
B ` D

D ` C C ` B cut
D ` B �(re)

�B ` �D
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Theoretical results III

Theorem
Proof search complexity for MILL is in PSPACE.

This is a membership result, due to the chose fragment of
intuitionistic multiplicative additive linear logic (MALL). A hardness
result holds for the full MALL.

21 / 42



Actual agency

�aA : “agent a brings about A .”

Principles:

1 If two statements are equivalent, then bringing about one is
equivalent to bringing about the other.

if `H A ( B and `H B ( A then `H �aA ( �aB

2 If something is brought about, then this something holds.

�aA ( A

3 It is not possible to bring about a tautology.

if `H A then `H �aA ( ⊥

4 If an agent brings about two things concomitantly then the agent
also brings about the conjunction of these two things.

�aA ⊗ �aB ( �a(A ⊗ B)
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Sequent rules (extends the calculus for ILL)

Linear BIAT

A ` B B ` A �a(re)
�aA ` �aB

Γ,A ` B act(a)
Γ,�aA ` B

Γ ` �aA ∆ ` �aB
�a⊗

Γ,∆ ` �a(A ⊗ B)

` A
∼nec

�aA ` ⊥
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Theoretical results for Linear BIAT I

Theorem (Completeness)

The sequent calculus (Hilbert system) for Linear BIAT is sound and
complete wrt the class of modal Kripke resource frames that satisfy:

1 (∼nec) requires: if X ∈ Na(w) and e ∈ X , then w ∈ V(⊥).

2 (act(a)) requires: if X ∈ Na(w), then w ∈ X .

3 Define X ◦ Y = {x ◦ y | x ∈ X and y ∈ Y } and
X↑ = {y | y ≥ x and x ∈ X }:
(�a⊗) requires: if X ∈ Na(x) and Y ∈ Na(y), then
(X ◦ Y)↑ ∈ Na(x ◦ y).
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Theoretical results for Linear BIAT II

Theorem (Cut elimination)

Cut elimination holds for Linear BIAT

Theorem
Proof search complexity for Linear BIAT is in PSPACE
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An application: Artefacts

Artefacts are special kind of objects that are characterized by
the fact that they are designed to achieve a goal in a particular
environment.

An important aspect of artefacts is their interaction with the
environment: with the agents that use artefacts to achieve a
specific goal and with the resources required to achieve that
goal.

A logical modeling of artefacts means:

the function of the artefact is represented by a logical formula;

the behaviour of the artefact in the environment is captured by
means of a form of reasoning.
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Very simple artefact and person-artefact
interaction

An electric screwdriver has two components:

A power-pistol (p) produces some rotational force (F) when the
button is pushed (P): �p(P ( F).

The screwdriver bit (b) tightens a loose screw (S) when a
rotational force (F) is applied: �b(S ⊗ F ( T).

Suppose that:

We have an electric screwdriver (p and b);

We have a loose screw (S);

agent a pushes the button of the pistol (�aP).
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We can have a tighten screw (T ), as the provability of the
following sequent shows:

S ,�aP,�p(P ( F),�b(S ⊗ F ( T) ` T

S ` S

P ` P �a(refl)
�aP ` P F ` F

(L
�aP,P ( F ` F

⊗RS ,�aP,P ( F ` S ⊗ F T ` T
(LS ,�aP,P ( F ,S ⊗ F ( T ` T ...

S ,�aP,�p(P ( F),�b(S ⊗ F ( T) ` T

We cannot have two tighten screws:

S ,�aP,�p(P ( F),�b(S ⊗ F ( T)) 0 T ⊗ T

28 / 42



A logic for artefacts

Formulas encode the function of the artefact

Provability shows the achievability of the goal in a given
environment

A proof encodes then the actualisation of the behaviour of the
artefact in a given environment. The execution of the artefact in
a given context.
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Order-sensitivity I
We can drop the exchange rule, too.

Γ,A ,B ,∆ ` C
(E)

Γ,B ,A ,∆ ` C

Extension to partially commutative Linear Logic (PCL) (De Groote,
Retoreé, et al):

non-commutative multiplicative conjunction �:

A � B reads “first A then B”;

two order sensitive linear implications \ and /
(like in Lambek Calculus).

Talking about sequences of actions in the logics of actual agency:

�a(A � B) reads “a does A followed by B”;

(�aA) � (�bB) reads “first a brings about A then b brings about
B”.
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Order-sensitivity II

The language of modal PCL extends the language of MILL by adding
the following operators:
The non-commutative tensor noted by � and the two order sensitive
implications noted \ and /:

A ::= 1 | p | A ⊗ A | A & A | A ( A | A � A | A \ A | A/A | �A

where p ∈ Atom.
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PCL - Structural rules

Γ[∆1, (∆2,∆3)] ` A
,a1

Γ[(∆1,∆2),∆3)] ` A
Γ[(∆1,∆2),∆3)] ` A

,a2
Γ[∆1, (∆2,∆3)] ` A

Γ[∆1; (∆2; ∆3)] ` A
;a1

Γ[(∆1; ∆2); ∆3)] ` A
Γ[(∆1; ∆2); ∆3)] ` A

;a2
Γ[∆1; (∆2; ∆3)] ` A

Γ[∆1,∆2] ` A
,com

Γ[∆2,∆1] ` A
Γ[∆1; ∆2] ` A

ent
Γ[∆1,∆2] ` A
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PCL - logical rules

Γ[A ; B] ` C
�L

Γ[A � B] ` C
Γ ` A Γ′ ` B

�R
Γ; Γ′ ` A � B

Γ ` A ∆[B] ` C
\ L

∆[Γ; A \ B] ` C
A ; Γ ` B

\R
Γ ` A \ B

Γ ` A ∆[B] ` C
/ L

∆[B/A ; Γ] ` C
Γ; A ` B

/R
Γ ` A/B
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PCL - as a logic of agency

The axioms of MILL hold, plus: we have to rephrase the axiom
�a(refl) for mixed commutative and non-commutative context and add
an axiom for combining sequences of actions:

Γ[A ] ` B
�a(refl)

Γ[�aA ] ` B
Γ ` �aA ∆ ` �aB

�a�
Γ; ∆ ` �a(A � B)
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Semantics
The model is now specified byM = (M,e, ◦, •,≥,N,V).

Bifunctoriality is assumed also for •: if m ≥ n, and m′ ≥ n′, then
m •m′ ≥ n • n′.

The entropy principle is captured in the models by means of the
following constraint: for all x, y, x ◦ y ≥ x • y.

IfM satisfies all these conditions, we call it a partially
commutative modal Kripke resource model.

The new truth conditions are the following:

m |=M A � B iff there exist m1 and m2 such that
m ≥ m1 •m2 and m1 |=M A and m2 |=M B.

m |=M A \ B iff for all n ∈ M, if n |=M A , then
n •m |=M B.

m |=M B/A iff for all n ∈ M, if n |=M A , then
m • n |=M B.

Note: if m |= A ⊗ B, then by m1 ◦m2 ≥ m1 •m2 and heredity, we have
m |= A � B.
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Example

S ` S
F ` F �i(refl)
�iF ` F

�RS;�iF ` S � F T ` T
\L

(S;�iF); S � F \ T ` T
�s•(refl)

S;�iF ;�s•(S � F \ T) ` T
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Conclusion and future work

A logic for reasoning about resource sensitive-agency: the linear
propositional part takes care of resource dependencies and the
modal part accounts for agency.

We presented a number of results that show that MILL and
Linear BIAT are logically well behaved systems.

Future work:

Extend the intuitionistic fragment to full classical linear
logic, relvant logics, bunch implication.
Provide a resource-sensitive account of a number of logic
of agency, e.g. Coalition Logic.
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Conclusion and future work I: planning

A logical modelling of resource sensitive planning:

Formulas encode the resource sensitive description of the
actions and the goals.

Provability shows the achievability of the goal in a given
environment

A proof encodes then the execution of the goal in a given
environment.
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An automatically generated plan1

1
http://www.loa.istc.cnr.it/personal/troquard/SOFTWARES/MLLPROVER/mllprover.html
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Conclusion and future work II: agents negotiation

A logical modelling of agent-based economic actions (negotiation) (
[PE10a, PE10b]):

Formulas encode economic actions (buying, selling, etc).

Provability of a suitable sequent means the possibility of
concluding a deal.

A proof of the sequent encodes the execution of the economic
deal.

p1, . . . ,pm︸      ︷︷      ︸
goods

,
⊗
p∈A

[&j∈N(p ( �jp)]M(p)

︸                          ︷︷                          ︸
who gets what

, pref1, . . . , prefn︸             ︷︷             ︸
Agents′preferences

` uk︸︷︷︸
revenue

where prefj is a formula expressing buying or selling items involving j,
e.g.

�j(p ⊗ q ⊗ r)→ uj
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Summing up

We discussed the foundation of the modelling of actions in the
tradition of the logic of agency.

We focussed in particular on STIT and on BIAT.

We proposed a reformulation of BIAT in the realm of resource
sensitive logics.

We investigated the theoretical properties of those logics.

We discussed a few modelling examples of the application of a
resource sensitive logic of agency.
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