Knowledge representation and ontology engineering

3. knowledge engineering with PL and FOL

Nicolas Troquard nicolas.troquard@gssi.it

Outline

1 Knowledge engineering with Propositional Logic

2 Knowledge engineering with First Order Logic

Language

The language of propositional logic is inductively defined from:

- Propositional variables: atomic statements that can be true or false
- Symbol T: truth
- Propositional connectives:
 - →: not
 - ▶ ∀: or
- Parentheses (and)

Formally:

$$A ::= \top \mid p \mid \neg A \mid A \lor A$$

where p is a propositional variable.

Defined connectives:

- $\blacksquare A \land B := \neg(\neg A \lor \neg B)$
- $\blacksquare \ A \to B := \neg A \vee B$
- $\blacksquare A \leftrightarrow B := (A \to B) \land (B \to A)$
- $\bot := \neg \top$

Examples

A simple knowledge base of the domain of tumours:

- Benign $\rightarrow \neg$ Metastasis
- Stage4 ↔ ¬Benign
- Treatment \rightarrow Surgery \lor Chemo \lor Radio

Meaning through interpretations

An interpretation for PL is a tuple $\mathcal{I} = (P, .^{\mathcal{I}})$, where:

- \blacksquare P is a set of propositional variables
- $\blacksquare \ .^{\mathcal{I}}: P \longrightarrow \{true, false\} \text{ assigns truth values to propositional variables}$

The assignment $.^{\mathcal{I}}$ can be inductively extended to all PL formulas:

- $(\neg A)^{\mathcal{I}} = true \text{ iff } A^{\mathcal{I}} = false$
- $(A \lor B)^{\mathcal{I}} = true \text{ iff } A^{\mathcal{I}} = true \text{ or } B^{\mathcal{I}} = true$

We write $\mathcal{I} \models A$ when $A^{\mathcal{I}} = true$, and say that A is satisfied in \mathcal{I} , or that \mathcal{I} is a model of A.

Reasoning, computational complexity of PL

A formula A is satisfiable if there is an interpretation that is a model of A.

A formula A is valid if A is satisfied in every model.

A set of formulas Γ entails a formula B if every interpretation that is model of all formulas in Γ is also a model of B.

Deciding satisfiability in PL is NP-complete.

Deciding unsatisfiability in PL is coNP-complete.

Deciding validity in PL is coNP-complete. (A valid iff $\neg A$ is not satisfiable)

Deciding entailment in PL is coNP-complete (Γ entails B iff ($\bigwedge_{A \in \Gamma} A$) $\to B$ is valid)

Reminder:

... $AC^0 \subseteq LOGSPACE \subseteq NLOGSPACE \subseteq P \subseteq NP$, $coNP \subseteq ... \subseteq PH \subseteq PSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE \subseteq 2EXPTIME \subseteq N2EXPTIME \subseteq 2EXPSPACE \subseteq ... \subseteq E \subseteq TOWER \subseteq RE \subseteq ...$

... and much more, before, after, and in-between.

Limitations of PL (1)

Consider the following statements from a medical domain:

- A juvenile disease affects only children or teenagers
- Children and teenagers are not adults
- Juvenile arthritis is a kind of arthritis and a juvenile disease
- Arthritis affects some adults

Expected consequence (this could be a competency question): Juvenile arthritis does not affect adults.

Attempt at formalisation in PL:

- JuvDisease → AffectsChild ∨ AffectsTeenager
- Child \lor Teenager $\rightarrow \neg$ Adult
- JuvArthritis → JuvDisease ∧ Arthritis
- Arthritis → AffectsAdult

Does it entail: JuvArthritis → ¬AffectsAdult?

Limitations of PL (1)

Consider the following statements from a medical domain:

- A juvenile disease affects only children or teenagers
- Children and teenagers are not adults
- Juvenile arthritis is a kind of arthritis and a juvenile disease
- Arthritis affects some adults

Expected consequence (this could be a competency question): Juvenile arthritis does not affect adults.

Attempt at formalisation in PL:

- JuvDisease → AffectsChild ∨ AffectsTeenager
- Child \vee Teenager $\rightarrow \neg$ Adult
- JuvArthritis → JuvDisease ∧ Arthritis
- Arthritis → AffectsAdult

Does it entail: JuvArthritis → ¬AffectsAdult?

No. Worse, we obtain an unsatisfiable set of formulas when we add:

- JuvArthritis $\rightarrow \neg$ AffectsAdult?
- JuvArthritis

Limitations of PL (2)

PL cannot make a distinction between objects, relationships between objects, and quantifier restrictions.

- A juvenile disease affects only children or teenagers
- Children and teenagers are not adults
- Juvenile arthritis is a kind of arthritis and a juvenile disease
- Arthritis affects some adults

We need a more expressive language for knowledge representation.

Outline

1 Knowledge engineering with Propositional Logi

2 Knowledge engineering with First Order Logic

Language

FO languages are inductively defined from:

- Predicate Symbols, each with an arity
- Function symbols, each with an arity
- Constants
- Variables
- Symbol T: truth
- Propositional connectives: ¬, ∨
- \blacksquare The existential and universal quantifiers: \exists , \forall
- Parentheses (and)

Formally:

$$t ::= x \mid c \mid f(t, \dots, t)$$
$$\beta ::= t = t \mid R(t, \dots, t)$$
$$\alpha ::= \top \mid \beta \mid \neg \alpha \mid \alpha \lor \alpha \mid \exists x.\alpha$$

where t are terms, f are functions mapping tuples of terms to terms, and R are relations over terms.

In the formula MotherOf(ann, john) $\land \exists x.$ BrotherOf(bob, x), x is a bound variable. In the formula FatherOf(john, x), x is a free variable.

A FO sentence is a formula without free variables.

Meaning through interpretations

An interpretation for FOL is a tuple $\mathcal{I} = (D, \mathcal{I})$, where:

- *D* is non-empty set; the domain of interpretation
- \blacksquare . $^{\mathcal{I}}$ is the interpretation function that associates:
 - every constant c an object $c^{\mathcal{I}} \in D$.
 - ▶ every n-ary function symbol f, a function $f^{\mathcal{I}}:D^n\longrightarrow D$ ▶ every n-ary predicate symbol R, a relation $R^{\mathcal{I}}\subseteq D^n$.

Meaning through interpretations and assignments

Interpreting terms:

- To interpret free variables, given an interpretation \mathcal{I} , an assignment is a function g that assigns an element of D to every variable of the language.
- We can extend the assignment g: to constants g(c) = c, and to functions $g(f(t_1, \ldots, t_n)) = f(g(t_1), \ldots, g(t_n))$.

Given an interpretation \mathcal{I} and an assignment g, every FOL formula is either true or false:

- $[t_1 = t_2)^{\mathcal{I}}[g] = true \text{ iff } g(t_1) = g(t_2)$

$$(\exists x.\alpha)^{\mathcal{I}}[g] = true \text{ iff there is } a \in D \text{ such that } \alpha^{\mathcal{I}}[g/x \mapsto a] = true$$

That is, there is an a in the domain of interpretation that we can (re)assign to x, that makes α true in \mathcal{I} under the (modified) assignment.

Satisfiability of sentences

For interpreting a sentence, assignments are irrelevant (no free variables).

Given a sentence α , we write $\mathcal{I} \models \alpha$ when $\alpha^{\mathcal{I}} = true$, and say that α is satisfied in \mathcal{I} , or that \mathcal{I} is a model of α .

Validity and entailment are defined from satisfiability.

Example in FOL (1)

- Child, Arthritis, ... Unary predicates
- Affects Binary predicate
- ssnOf Unary function
- johnSmith, maryJones, jra Constants¹
- $\blacksquare x, y, z$ variables

E.g.:

- Child(johnSmith)
- Affects(jra, johnSmith)
- $\forall x.(\mathsf{Affects}(\mathsf{jra},x) \to \mathsf{Child}(x) \lor \mathsf{Teenager}(x))$
- $\qquad \neg (\exists x. \exists y. (\mathsf{JuvArthritis}(x) \land \mathsf{Affects}(x,y) \land \mathsf{Adult}(y))) \\$

 $^{^{1}}$ jra: juvenile rheumatoid arthritis

Example in FOL (2)

- A juvenile disease affects only children or teenagers
- Children and teenagers are not adults
- Juvenile arthritis is a kind of arthritis and a juvenile disease
- Arthritis affects some adults

Formalisation in FOL:

- $\forall x.(\mathsf{Child}(x) \lor \mathsf{Teenager}(x) \to \neg \mathsf{Adult}(x))$
- $\forall x.(\mathsf{JuvArthritis}(x) \to \mathsf{Arthritis}(x) \land \mathsf{JuvDisease}(x))$
- $\exists x. (\exists y. (\mathsf{Arthritis}(x) \land \mathsf{Affects}(x,y) \land \mathsf{Adult}(y)))$

PL vs FOL

A juvenile disease affects only children or teenagers

- \blacksquare JuvDisease \rightarrow AffectsChild \lor AffectsTeenager
 - ▶ 8 possible interpretations (over the three propositional variables)
 - ▶ 7 models
- $\blacksquare \ \forall x. (\forall y. (\mathsf{JuvDisease}(x) \land \mathsf{Affects}(x,y) \to \mathsf{Child}(y) \lor \mathsf{Teenager}(y)))$
 - ▶ infinity of interpretations (over arbitrary domains)
 - infinity of models

The role of reasoning

Why are we interested in reasoning?

- Discover new knowledge
- Detect undesired consequences
 - ▶ Γ entails $\exists x.(\mathsf{Teenager}(x) \land \mathsf{JuvDisease}(x))$
 - ightharpoonup broken knowledge: Γ entail \perp

Juvenile arthritis does not affect adults?

Knowledge base Γ :

- $\blacksquare \ \forall x. (\forall y. (\mathsf{JuvDisease}(x) \land \mathsf{Affects}(x,y) \to \mathsf{Child}(y) \lor \mathsf{Teenager}(y)))$
- $\forall x.(\mathsf{Child}(x) \lor \mathsf{Teenager}(x) \to \neg \mathsf{Adult}(x))$
- $\forall x.(\mathsf{JuvArthritis}(x) \to \mathsf{Arthritis}(x) \land \mathsf{JuvDisease}(x))$
- $\exists x. (\exists y. (\mathsf{Arthritis}(x) \land \mathsf{Affects}(x,y) \land \mathsf{Adult}(y)))$

Question:

■ Does Γ entail $\forall x.(\forall y.(\mathsf{JuvArthritis}(x) \land \mathsf{Affects}(x,y) \rightarrow \neg \mathsf{Adult}(y))$?

Exercise

Answer the question.

Juvenile arthritis does not affect adults? (solution)

Knowledge base Γ :

- $\blacksquare \ \forall x. (\forall y. (\mathsf{JuvDisease}(x) \land \mathsf{Affects}(x,y) \to \mathsf{Child}(y) \lor \mathsf{Teenager}(y)))$
- $\forall x.(\mathsf{Child}(x) \lor \mathsf{Teenager}(x) \to \neg \mathsf{Adult}(x))$
- $\forall x.(\mathsf{JuvArthritis}(x) \to \mathsf{Arthritis}(x) \land \mathsf{JuvDisease}(x))$
- $\exists x.(\exists y.(\mathsf{Arthritis}(x) \land \mathsf{Affects}(x,y) \land \mathsf{Adult}(y)))$

Question:

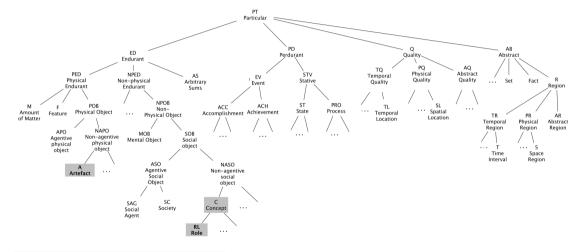
■ Does Γ entail $\forall x.(\forall y.(\mathsf{JuvArthritis}(x) \land \mathsf{Affects}(x,y) \rightarrow \neg \mathsf{Adult}(y))$?

Answer:

- JuvArthritis(x) implies Arthritis(x) and JuvDisease(x) (use axiom 3)
- \blacksquare so we have JuvDisease(x) and Affects(x, y)
- JuvDisease(x) and Affects(x, y) imply Child(y) \vee Teenager(y) (use axiom 1)
- Child $(y) \lor \text{Teenager}(y) \text{ implies } \neg \text{Adult}(x) \text{ (use axiom 2)}$
- so $\mathsf{JuvArthritis}(x) \land \mathsf{Affects}(x,y) \mathsf{imply} \neg \mathsf{Adult}(x)$
- so juvenile arthritis does not affect adults.

FOL as a language for foundational ontologies (1)

DOLCE [Masolo et al. 2003, Borgo et al. 2022]², a foundational ontology. The taxonomy:



²Stefano Borgo et al. "DOLCE: A descriptive ontology for linguistic and cognitive engineering". In: *Applied Ontology* 17.1 (2022), pp. 45–69.

FOL as a language for foundational ontologies (2)

(ASO: agentive social object, SOB: social object, SC: society, P: (temporal) parthood, ED: endurant, PD: perdurant, T: time, PRE: presence, PC(C): (constant) participation)

Example of taxonomy (Agent):

- \blacksquare $\forall x.(\mathsf{ASO}(x) \to \mathsf{SOB}(x))$
- **...**

Example of typing (Mereology):

- **...**

Example of definition ((Constant) Participation):

- **...**
- $\blacksquare \ \mathsf{PCC}(x,y) := \exists t. (\mathsf{PRE}(y,t)) \land \forall t. (\mathsf{PRE}(y,t) \to \mathsf{PC}(x,y,t))$

Computational complexity of FOL

The set of valid formulas in FOL can be characterized with a finite, sound and complete axiomatization. Validities in FOL are recursively enumerable [Gödel 1929].

Satisfiability in FOL is undecidable [Church 1936, Turing 1937].

We need a language computationally easier for knowledge representation and reasoning.

This is what we look at next.

Credits

Many slides and examples based on Ian Horrocks's KRR lectures https://www.cs.ox.ac.uk/people/ian.horrocks/. https://www.cs.ox.ac.uk/teaching/courses/2020-2021/KRR/