
Knowledge representation and ontology engineering
3. knowledge engineering with PL and FOL

Nicolas Troquard
nicolas.troquard@gssi.it

Outline

1 Knowledge engineering with Propositional Logic

2 Knowledge engineering with First Order Logic

1 / 22

Language

The language of propositional logic is inductively defined from:

■ Propositional variables: atomic statements that can be true or false

■ Symbol ⊤: truth

■ Propositional connectives:
▶ ¬: not
▶ ∨: or

■ Parentheses (and)

Formally:
A ::= ⊤ | p | ¬A | A ∨A

where p is a propositional variable.

Defined connectives:

■ A ∧B := ¬(¬A ∨ ¬B)

■ A → B := ¬A ∨B

■ A ↔ B := (A → B) ∧ (B → A)

■ ⊥ := ¬⊤

2 / 22

Examples

A simple knowledge base of the domain of tumours:

■ Benign → ¬Metastasis

■ Stage4 ↔ ¬Benign
■ Treatment → Surgery ∨ Chemo ∨ Radio

3 / 22

Meaning through interpretations

An interpretation for PL is a tuple I = (P, .I), where:

■ P is a set of propositional variables

■ .I : P −→ {true, false} assigns truth values to propositional variables

The assignment .I can be inductively extended to all PL formulas:

■ (¬A)I = true iff AI = false

■ (A ∨B)I = true iff AI = true or BI = true

We write I |= A when AI = true, and say that A is satisfied in I, or that I is a model of A.

4 / 22

Reasoning, computational complexity of PL

A formula A is satisfiable if there is an interpretation that is a model of A.
A formula A is valid if A is satisfied in every model.
A set of formulas Γ entails a formula B if every interpretation that is model of all formulas in Γ is also
a model of B.

Deciding satisfiability in PL is NP-complete.
Deciding unsatisfiability in PL is coNP-complete.
Deciding validity in PL is coNP-complete. (A valid iff ¬A is not satisfiable)
Deciding entailment in PL is coNP-complete (Γ entails B iff (

∧
A∈Γ A) → B is valid)

Reminder:
... AC0 ⊆ LOGSPACE ⊆ NLOGSPACE ⊆ P ⊆ NP, coNP ⊆ ... ⊆ PH ⊆ PSPACE ⊆ EXPTIME ⊆
NEXPTIME ⊆ EXPSPACE ⊆ 2EXPTIME ⊆ N2EXPTIME ⊆ 2EXPSPACE ⊆ ... ⊆ E ⊆ TOWER ⊆
RE ⊆ ...
... and much more, before, after, and in-between.

5 / 22

Limitations of PL (1)

Consider the following statements from a medical domain:

■ A juvenile disease affects only children or teenagers

■ Children and teenagers are not adults

■ Juvenile arthritis is a kind of arthritis and a juvenile disease

■ Arthritis affects some adults

Expected consequence (this could be a competency question): Juvenile arthritis does not affect adults.

Attempt at formalisation in PL:

■ JuvDisease → AffectsChild ∨ AffectsTeenager

■ Child ∨ Teenager → ¬Adult
■ JuvArthritis → JuvDisease ∧ Arthritis

■ Arthritis → AffectsAdult

Does it entail: JuvArthritis → ¬AffectsAdult?

6 / 22

Limitations of PL (1)

Consider the following statements from a medical domain:

■ A juvenile disease affects only children or teenagers

■ Children and teenagers are not adults

■ Juvenile arthritis is a kind of arthritis and a juvenile disease

■ Arthritis affects some adults

Expected consequence (this could be a competency question): Juvenile arthritis does not affect adults.

Attempt at formalisation in PL:

■ JuvDisease → AffectsChild ∨ AffectsTeenager

■ Child ∨ Teenager → ¬Adult
■ JuvArthritis → JuvDisease ∧ Arthritis

■ Arthritis → AffectsAdult

Does it entail: JuvArthritis → ¬AffectsAdult?

No. Worse, we obtain an unsatisfiable set of formulas when we add:

■ JuvArthritis → ¬AffectsAdult?
■ JuvArthritis

6 / 22

Limitations of PL (2)

PL cannot make a distinction between objects, relationships between objects, and quantifier
restrictions.

■ A juvenile disease affects only children or teenagers

■ Children and teenagers are not adults

■ Juvenile arthritis is a kind of arthritis and a juvenile disease

■ Arthritis affects some adults

We need a more expressive language for knowledge representation.

7 / 22

Outline

1 Knowledge engineering with Propositional Logic

2 Knowledge engineering with First Order Logic

8 / 22

Language
FO languages are inductively defined from:

■ Predicate Symbols, each with an arity

■ Function symbols, each with an arity

■ Constants

■ Variables

■ Symbol ⊤: truth

■ Propositional connectives: ¬, ∨
■ The existential and universal quantifiers: ∃, ∀
■ Parentheses (and)

Formally:
t ::= x | c | f(t, . . . , t)

β ::= t = t | R(t, . . . , t)

α ::= ⊤ | β | ¬α | α ∨ α | ∃x.α

where t are terms, f are functions mapping tuples of terms to terms, and R are relations over terms.
In the formula MotherOf(ann, john) ∧ ∃x.BrotherOf(bob, x), x is a bound variable.
In the formula FatherOf(john, x), x is a free variable.
A FO sentence is a formula without free variables.

9 / 22

Meaning through interpretations

An interpretation for FOL is a tuple I = (D, .I), where:

■ D is non-empty set; the domain of interpretation

■ .I is the interpretation function that associates:
▶ every constant c an object cI ∈ D.
▶ every n-ary function symbol f , a function fI : Dn −→ D
▶ every n-ary predicate symbol R, a relation RI ⊆ Dn.

10 / 22

Meaning through interpretations and assignments

Interpreting terms:

■ To interpret free variables, given an interpretation I, an assignment is a function g that assigns an
element of D to every variable of the language.

■ We can extend the assignment g: to constants g(c) = c, and to functions
g(f(t1, . . . , tn)) = f(g(t1), . . . , g(tn)).

Given an interpretation I and an assignment g, every FOL formula is either true or false:

■ R(t1, . . . , tn)
I [g] = true iff (g(t1), . . . , g(tn)) ∈ RI

■ (t1 = t2)
I [g] = true iff g(t1) = g(t2)

■ (¬α)I [g] = true iff αI [g] = false

■ (α1 ∨ α2)
I [g] = true iff αI

1 [g] = true or αI
2 [g] = true

(∃x.α)I [g] = true iff there is a ∈ D such that αI [g/x 7→ a] = true

That is, there is an a in the domain of interpretation that we can (re)assign to x, that makes α true in
I under the (modified) assignment.

11 / 22

Satisfiability of sentences

For interpreting a sentence, assignments are irrelevant (no free variables).

Given a sentence α, we write I |= α when αI = true, and say that α is satisfied in I, or that I is a
model of α.

Validity and entailment are defined from satisfiability.

12 / 22

Example in FOL (1)

■ Child, Arthritis, ... Unary predicates

■ Affects Binary predicate

■ ssnOf Unary function

■ johnSmith, maryJones, jra Constants1

■ x, y, z variables

E.g.:

■ Child(johnSmith)

■ Affects(jra, johnSmith)

■ ∀x.(Affects(jra, x) → Child(x) ∨ Teenager(x))

■ ¬(∃x.∃y.(JuvArthritis(x) ∧ Affects(x, y) ∧ Adult(y)))

1jra: juvenile rheumatoid arthritis
13 / 22

Example in FOL (2)

■ A juvenile disease affects only children or teenagers

■ Children and teenagers are not adults

■ Juvenile arthritis is a kind of arthritis and a juvenile disease

■ Arthritis affects some adults

Formalisation in FOL:

■ ∀x.(∀y.(JuvDisease(x) ∧ Affects(x, y) → Child(y) ∨ Teenager(y)))

■ ∀x.(Child(x) ∨ Teenager(x) → ¬Adult(x))
■ ∀x.(JuvArthritis(x) → Arthritis(x) ∧ JuvDisease(x))

■ ∃x.(∃y.(Arthritis(x) ∧ Affects(x, y) ∧ Adult(y)))

14 / 22

PL vs FOL

A juvenile disease affects only children or teenagers

■ JuvDisease → AffectsChild ∨ AffectsTeenager
▶ 8 possible interpretations (over the three propositional variables)
▶ 7 models

■ ∀x.(∀y.(JuvDisease(x) ∧ Affects(x, y) → Child(y) ∨ Teenager(y)))
▶ infinity of interpretations (over arbitrary domains)
▶ infinity of models

15 / 22

The role of reasoning

Why are we interested in reasoning?

■ Discover new knowledge

■ Detect undesired consequences
▶ Γ entails ∃x.(Teenager(x) ∧ JuvDisease(x))
▶ broken knowledge: Γ entail ⊥

16 / 22

Juvenile arthritis does not affect adults?

Knowledge base Γ:

1 ∀x.(∀y.(JuvDisease(x) ∧ Affects(x, y) → Child(y) ∨ Teenager(y)))

2 ∀x.(Child(x) ∨ Teenager(x) → ¬Adult(x))
3 ∀x.(JuvArthritis(x) → Arthritis(x) ∧ JuvDisease(x))

4 ∃x.(∃y.(Arthritis(x) ∧ Affects(x, y) ∧ Adult(y)))

Question:

■ Does Γ entail ∀x.(∀y.(JuvArthritis(x) ∧ Affects(x, y) → ¬Adult(y))?

Exercise

Answer the question.

17 / 22

Juvenile arthritis does not affect adults? (solution)

Knowledge base Γ:

1 ∀x.(∀y.(JuvDisease(x) ∧ Affects(x, y) → Child(y) ∨ Teenager(y)))

2 ∀x.(Child(x) ∨ Teenager(x) → ¬Adult(x))
3 ∀x.(JuvArthritis(x) → Arthritis(x) ∧ JuvDisease(x))

4 ∃x.(∃y.(Arthritis(x) ∧ Affects(x, y) ∧ Adult(y)))

Question:

■ Does Γ entail ∀x.(∀y.(JuvArthritis(x) ∧ Affects(x, y) → ¬Adult(y))?
Answer:

■ JuvArthritis(x) implies Arthritis(x) and JuvDisease(x) (use axiom 3)

■ so we have JuvDisease(x) and Affects(x, y)

■ JuvDisease(x) and Affects(x, y) imply Child(y) ∨ Teenager(y) (use axiom 1)

■ Child(y) ∨ Teenager(y) implies ¬Adult(x) (use axiom 2)

■ so JuvArthritis(x) ∧ Affects(x, y) imply ¬Adult(x)
■ so juvenile arthritis does not affect adults.

18 / 22

FOL as a language for foundational ontologies (1)

DOLCE [Masolo et al. 2003, Borgo et al. 2022]2, a foundational ontology. The taxonomy:

2Stefano Borgo et al. “DOLCE: A descriptive ontology for linguistic and cognitive engineering”. In: Applied Ontology 17.1
(2022), pp. 45–69.

19 / 22

FOL as a language for foundational ontologies (2)

(ASO: agentive social object, SOB: social object, SC: society, P: (temporal) parthood, ED: endurant,
PD: perdurant, T: time, PRE: presence, PC(C): (constant) participation)

Example of taxonomy (Agent):

■ ∀x.(ASO(x) → SOB(x))

■ ∀x.(SC(x) → ASO(x))

■ ...

Example of typing (Mereology):

■ P(x, y, t) → ED(x) ∧ ED(y) ∧ T(t)

■ ...

Example of definition ((Constant) Participation):

■ PC(x, y, t) → ED(x) ∧ PD(x) ∧ T(t)

■ ...

■ PCC(x, y) := ∃t.(PRE(y, t)) ∧ ∀t.(PRE(y, t) → PC(x, y, t))

20 / 22

Computational complexity of FOL

The set of valid formulas in FOL can be characterized with a finite, sound and complete axiomatization.
Validities in FOL are recursively enumerable [Gödel 1929].

Satisfiability in FOL is undecidable [Church 1936, Turing 1937].

We need a language computationally easier for knowledge representation and reasoning.

This is what we look at next.

21 / 22

Credits

Many slides and examples based on Ian Horrocks’s KRR lectures
https://www.cs.ox.ac.uk/people/ian.horrocks/.
https://www.cs.ox.ac.uk/teaching/courses/2020-2021/KRR/

22 / 22

https://www.cs.ox.ac.uk/people/ian.horrocks/
https://www.cs.ox.ac.uk/teaching/courses/2020-2021/KRR/

	Knowledge engineering with Propositional Logic
	Knowledge engineering with First Order Logic

