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Abstract

STIT (Seeing To It That) logic is a logic of agency, proposed in
the nineties in the domain of philosophy of action. It is the logic
of constructions of the form “agent a sees to it that ¢”. We believe
that STIT theory can contribute to the logical analysis of multi-agent
systems. To support this claim, we show that there is a close rela-
tionship with more recent logics for multi-agent systems. This pa-
per extends [BHT06a] where we presented a translation from Pauly’s
Coalition Logic to Chellas’ STIT logic. Here we focus on Alur, Hen-
zinger and Kupferman’s Alternating-time Temporal Logic ATL, and
the logic of the ‘fused’ Q4] secstit: | operator for strategic ability,
as described by Horty. After a brief presentation of Alternating-time
Temporal Logic and the definition of a discrete-time strategic STIT
framework slightly adapted from Horty, we give a translation from
Alternating-time Temporal Logic to the STIT framework, and prove
that it determines correct embedding.

1 Introduction

STIT (Seeing To It That) logics have been proposed in the nineties in the
domain of the philosophy of action [BP90|. They are logics of constructions
of the form “agent a sees to it that ¢”. Several versions of this modality have
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been studied in the philosophical literature. Here we use a strategic one,
viz. the fused STIT operator Q4] scstit: _| |[Hor01, p.152] which combines
a modality ¢, for strategic possibility with a strategic version of Chellas’
version of the STIT operator [ estit: |. This modality aims to model the
ability of groups of agents to ensure something by means of a strategy.

The semantics of the STIT operator is based on branching time temporal
structures. In this sense it extends the logical ontology of the so called
‘bringing it about’ operators [Por70, Elg93| that abstract from the temporal
aspect of agency. This results in weak modal logics which can be given
semantics in various ways, for instance by means of neighborhood models.
However, we see the interaction with time as a crucial ingredient of agency
that deserves a central place in the ontology of logics for agency and logics
for multi-agent systems.

In the philosophical literature the STIT operator has been used in the
analysis of agency and in the analysis of deontic concepts [BPX01, Hor01].
We believe that the philosophical intuitions underlying STIT theory are
equally relevant for logical models developed to analyze and design multi-
agent systems. To support this claim, in this paper we show that there is
a close relationship with more recent temporal logics for specification and
verification of multi-agent systems. In particular, we will study here the
relation between Alternating-time Temporal Logic (ATL) proposed by Alur,
Henzinger and Kupferman [AHK97, AHK99, AHKO02| and the logic of the
fused Q[ scstit: ] operator, as described by Horty [Hor01]. ATL was de-
signed as an extension of CTL. CTL is a branching-time temporal logic with
modal operators quantifying (universal (A) and existential (E)) over sets of
paths. In ATL, quantification is with respect to strategies, and quantifica-
tion over paths is implicit as quantification over all paths that are in the
outcome of a certain strategy. In particular, ((A)), where A is a group of
agents (A C Agt, where Agt is the set of all agents), stands for existential
quantification over strategies. In ATL, ((A)) is always followed by one of
the temporal operators X (next), G (henceforth) or ¢/ (until). Evaluation of
these temporal operators is with respect to paths that are in the outcome of
a strategy. For example, ({A))X¢ reads: “group A has a strategy to ensure
that next ¢”. This setting allows for refinements of the CTL quantification
over paths, CTL E corresponding to the ATL ((Agt)) and A corresponding
to ((@)). It was shown by Goranko [Gor01l] that ATL is also an extension
of Pauly’s Coalition Logic CL [Pau02]. The latter is the logic of expressions
of the form [A]p, reading “group A can ensure that ¢”. Such expressions
correspond to ATL formulas ((A))Xe.

In [BHT06a] we proposed the following translation from CL to STIT. The



box is the operator for historic necessity.

treu(p) = [p, for p € Atm
trac(-p) = tr(e)

trec(e V) = tr(p)Vir(y)
treu([Alp) = O[Acstit: Xtr(p)]

In this paper we propose a translation from ATL, ([Gor01]), to a discrete
version of strategic STIT logic.

In [W6104], a close examination of the differences and similarities of the
models of STIT theory and ATL is undertaken. It is shown that, under
the addition of some specific conditions (e.g., discreteness), the models of
the two systems can be seen to obey similar properties, like tree-likeness,
uniformity and ‘restrictedness’ (see section 4). However, these properties are
not necessarily expressible in the logics of STIT or ATL. So, although, from
a philosophical point of view, it is interesting to look at properties of models
as such, here we are essentially interested only in those properties that are
expressible in the logics. Where [W6104] only compares the models for ATL
and STIT, we also compare the logics of both systems.

In Section 2 we offer a brief presentation of Alternating-time Temporal
Logic. Section 3 deals with an adapted discrete-time STIT framework. We
prove a semantic equivalence result on ATL frames in Section 4. Section 5
presents the main result of this note: we describe a translation from ATL to
STIT, and prove that it is correct.! We conclude with a discussion and some
perspectives of investigation in Section 6.

2 Alternating-time Temporal Logic

The first paper on ATL is [AHK97|. This preliminary work is restricted to
turn-based games, i.e., games where each transition is governed by a single
agent. [AHK99| comes with general structures called alternating transition
systems (ATSs), where choices are expressed as sets of possible outcomes.
In [AHKO2] the authors change the models into concurrent game structures
(CGSs),? where choices are identified with explicit labels. ATSs and CGSs
have been proven equivalent by Goranko and Jamroga [GJ04]. Hence, defin-
ing the semantics of ATL in terms of either ATSs or CGSs is a matter of
convenience.

LA correct embedding is a sound and complete translation to a fragment of a stronger
logic.

2An alternative name from the literature is ‘multi-player game model’, abbreviated
‘MGM’.



In what follows, Atm represents a set of atomic propositions, and Agt is
the finite set of all agents.

Syntax Given that p ranges over Atm, and that A ranges over 249 the
language of ATL is defined by:

@ m= plop oA | ((A)Xe [ ((A)Ge | ((A)ely

The intended reading of ((A))n, with n a linear temporal formula (branch
formula), is that “group A can ensure 7 whatever agents in Agt \ A do”.

Models We present models for ATL as in [AHK99|, that is, in terms of
alternating transition systems which are tuples M = (W, 4, v), where:

e W is a nonempty set of states (alias worlds, alias moments).

o §:W x Agt — 22" is a transition function mapping each moment and
agent to a nonempty family of sets of possible successor moments.

o v : Atm — 2W is a valuation function.

Each @ € §(w,a) may be seen as the choice by an agent of a particular
action in its repertoire.

We use lock-step synchronous ATSs, which means that in every state, all
agents proceed simultaneously (as opposed to the particular case of turn-
based synchronous ATSs). The § function is non blocking (agent’s actions
are always compatible) and the simultaneous choice of every agent in Agt
determines a unique nezt state: assuming Agt = {a,...,a,}, for every state
w € W and every set {Q1,...,Q,} of choices Q; € §(w, a;), the intersection
@1N...NQ, is a singleton.

A strategy for an agent a is a mapping f, : W — 2%, such that it
associates to each sequence of states wyg...wy an element of §(wg,a)® A
collective strategy, for a set of agents A C Agt is a tuple F4 = (fu,,-- -, fa,,)
of strategies, one for each agent in A. The outcome of F)4 from w is defined
as:

out(w, Fa) = {\A = wowiwy ..., wy=w, Vi > 0 (w11 € ﬂ falwo...wy))}
acA

Definition 1 (strategy profile / choice profile). A strategy profile is a
collective strategy Fag for all agents of Agt. Analogously, a tuple (@1, ..., Qn)
(one Q; for each i € Agt) is called a choice profile.

3it actually suffices to use mappings f, : W — 2% [GJ04]. Also in the STIT setting
of section 3, strategies will be defined as functions from states into choices (and not from
sequences of states into choices). However, the current definition is the customary one.
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Semantics and axiomatization \[i] is the i-th position in the path A. A
formula is evaluated with respect to an ATS M = (W, §,v) and a moment
weWw.
M,w E ((A))Xp < dF4, VX € out(w, Fa), M, A[1] E ¢
M,w E{((A)Gy < TF4, V)X € out(w, Fa), M, A[i] = ¢,Vi >0
M w E ((A)pUy <= TF4, V) € out(w, Fa),
Ji > 0 (M, Ali] E ¢, V) € [0,4], M, Alj] E ¢)

Validity is defined as usual. The following complete axiomatization of
ATL (as an extension of any axiomatization for propositional logic) is given
in [GvDO05]. M, w = ((#))n means that n holds irrespective of the choices
made by A.

(L) ~((A)XL

(T) ((ANXT

(N) ~((0)X=p — ((Agt)) Xy

(S) (A XA ((A2)Xtp = ((A1UA))X (A1) if AiNAr =0
(FPa) ((ANGy = o A {((A)X((A)) G

(GFPg) ((ONG(0 — (o A ((A))X0)) = (D) G(0 — ((A))Gy)
(FFy) (ANt =@V (P A ((ANX{(A))pUp)

(LFFy) (NG (Vv (A {(A)XB)) = 0) = () G({((A))yUp — 6)
(({(4))X-Mon) from ¢ — ¢ infer ((4))Xp — ((4))Xe)

(((0))G-Nec)  from ¢ infer ((§))Ge

Note that the (/V) axiom follows from the determinism of choice profiles
(actions constituted by simultaneous choices for every agent in the system):
when every agent opts for a choice, the next state is fully determined, thus,
if something is not settled, the coalition of all agents (Agt) can always work
together to make its negation true. The axiom (S) says that two coalitions
can combine their efforts to ensure a conjunction of properties if they are dis-
joint. Note that from () it follows that ((A1))p A ({A2))—¢ is not satisfiable
for disjoint A; and A,. So, two disjoint coalitions cannot ensure inconsistent
propositions. Axiom (F Pg) characterizes the global modality as a fixpoint of
the next modality, and axiom (GF Pg) says that this is the greatest fixpoint.
Axiom (F'Py) characterizes the until operator as a (special kind of) fixpoint
of the next operator, and axiom LF P, expresses that the semantics dictates
that we take the least fixpoint.



3 A logic for strategic STIT ability

STIT theory originates from philosophy. Probably the first paper to refer
to the logic of “seeing to it that” is [BP88|. It analyzes the needs for a
general theory of “an agent making a choice among alternatives that lead to
an action”. The thesis is that the best way to meet this goal is to augment the
language with a class of sentences. The proposed class is one of the sentences
of the form “Ishmael sees to it that Ishmael sailed on board the Pequod”
paraphrasing the sentence “Ishmael sailed on board the Pequod”. Thus, from
any sentence involving an action (e.g., sailing) we can reformulate it into an
agentive one stating that an agent a sees to it that a state of affairs ¢ holds,
formally: [a stit: ¢]. [BP88| is a roadmap towards an outstandingly rich and
justified theory of agency compiled in [BPX01] and [Hor01].

It is worth noting that, often puzzlingly, STIT is widely influenced by the
observation that in a branching-time framework, future-tensed statements
are ambiguous to evaluate if not impossible. Suppose a moment w, and
two different moments w; and ws lying in the future of wy on two different
courses of time. ¢ is true at w; and false at wy and everywhere before
and after. What truth value should be assigned to the sentence “y is true
in the future of wy”? Indeed, ¢ really does lie in the future of w;, but
what if the course of time happens to go through ws instead? In general,
in branching-time, a moment alone does not provide enough information
to determine the truth value of a sentence about the future. Arthur Prior
[Pri67] and Richmond Thomason [Tho70, Tho84| hence proposed to evaluate
future-tensed sentences with respect to a moment and a particular course of
time running through it. This is why, as we will see, states of the world in
STIT models consist of ‘fragmentized’ moments; moments fragmentize into
as much indexes as there are courses of time through it. In this section, we
present the elements of the theory that are relevant in this work. Some extra
assumptions are made with respect to the original STIT theory. They are
discussed and motivated in Section 6.

Below we define the syntax of strategic STIT ability, as defined in chapter
6 of Horty’s book [Hor01], augmented by LTL reasoning capabilities.

Syntax Given that p ranges over Atm, and that A ranges over 249 a
language of strategic STIT is defined by:

0, %,... = ploe oAy |[Op| X | Ge | Ut | Os[A scstit: ¢]

First we have to explain why we call the logic defined relative to the
above syntax a logic of ‘strategic STIT ability’ in stead of a logic of ‘strategic



STIT’. The intuitive reading of {4[A scstit: ¢| is “it is strategically possible
that agents A see to it that ¢”. The operator {4[A scstit: ¢|, suggested by
Horty [Hor01, p.152], is thus a special (fused) operator that is ‘built’ from
an operator for strategic possibility (Qs¢) and a strategic version of Chellas’
STIT operator ([A cstit: ¢]). However, in Horty’s work these separate opera-
tors are not given a formal semantics individually; the operators are syntac-
tically forced to occur only in combination (in a recent proposal [BHT06b]
we propose a solution to this problem by evaluating with respect to strategy
/ state pairs). Yet, to understand the semantics of the fused operator, below
we discuss the intended semantics of the individual operators.

The semantics of STIT is embedded in the branching time framework. It
is based on structures of the form (W, <), in which W is a nonempty set of
moments, and < is a tree-like ordering of these moments: for any w, ws
and ws in W, if w; < w3 and wy < w3, then either w; = wy or wy; < wy or
Wo < W1.

A maximal set of linearly ordered moments from W is a history. Thus,
w € h denotes that moment w is on the history h. We define Hist as the
set of all histories of a STIT structure. H,, = {h|h € Hist,w € h} denotes
the set of histories passing through w. An indez is a pair w/h, consisting of
a moment w and a history h from H,, (i.e., a history and a moment in that
history).

To enable a comparison with ATL we make the following assumption:

Assumption 1 (countably infiniteness). Every history is isomorphic to
the set of natural numbers.

By assuming that histories are countably infinite sets of moments we will
be able to reason about temporal properties as in LTL.

A STIT model is a tuple M = (W, Choice, <, v), where:

e (W, <) is a branching-time structure.

e Choice : Agt x W — 22" {5 a function mapping each agent and each
moment w into a partition of H,,. The equivalence classes belonging
to C'hoice? can be thought of as possible choices or actions available
to agent a at w. Given a history h € H,,, Choice?(h) represents the
particular choice from Choice? containing h, or in other words, the

particular action performed by @ at the index w/h. We must have
Choice? # () and @ # 0 for every @ € Choice?.

e v is valuation function v : Atm — 2W>xHist,



Remark. In STIT models, moments may have different valuations, depend-
ing on the history they are living in (cf. [HB95, footnote 2, p.586]). Thus,
at any specific moment, we might have different valuations corresponding to
the results of the different (non-deterministic) actions possibly taken at that
moment.

Definition 2 (current moment / current choice). At index w/h we
shall call w the current moment and Choice? (h) the current choice/action.

In order to deal with group agency, Horty defines in [Hor01, section 2.4],
the notion of collective choice. Horty first introduces action selection func-
tions s,, from Agt into 27+ satisfying the condition that for each w € W and
a € Agt, s,(a) € Choice?. So, a selection function s, selects a particular
action for each agent at w.

Then, for a given w, Select,, is the set of all selection functions s,,. For
every s,, € Select,, it is assumed that (), 4, Sw(a) # 0. This constraint
corresponds to the assumption that the agents’ choices are independent, in
the sense that agents can never be deprived of choices due to the choices
made by other agents.

Moreover, in order to match ATL, we make the following assumption
stating that the intersection of choices of agents in Agt must exactly be the
set of histories passing through some immediate next moment:

Assumption 2 (determinism).

VweW, Jw e W (w<w and ﬂ Sw(a) = Hy)

a€Agt

Note that because STIT frames are trees, the moment w' is always a next
moment.

Using choice selection functions s,,, the C'hoice function can be general-
ized to apply to groups of agents (Choice : 249 x W — ZQHM). A collective
choice for a group of agents A C Agt is defined as:

Choice’y = {ﬂ sw(a)|sy € Select, }
a€A
Again, Choice¥(h) = {h'| there is Q € Choice¥ such that h,h' € Q}.
Semantics We conclude g1 ¢ if M, w/h = ¢ for every STIT model M,

h in M and moment w in h. A formula is evaluated with respect to a model
and an index.



M,w/h=p < w/hev(p),p € Atm.

M,w/h = - = M,w/hEp

M,w/hl=pVYy <= M,w/h=¢por M,w/hk=1
Historical necessity (or inevitability) at a moment w in a history is defined
as truth in all histories passing through w:

M,w/h=0p <= M,w/h' E ¢, VW' € H,.

When Og holds at w then ¢ is said to be settled true at w. Q¢ is defined in
the usual way as —[J—¢, and stands for historical possibility.

There are several STIT operators; the so-called Chellas’ STIT is defined
as follows:

M, w/h = [Acstit: p] <= M,w/h = ¢,Yh' € Choice¥(h).
Intuitively it means that group A’s current choices ensure ¢, whatever other
agents outside A do. The more complex deliberative STIT is defined as
[Adstit: o] = [Acstit: o] A =Oep.

As shown in [HB95|, both Chellas’ STIT and historical necessity are S5
modal operators, and =stir Oy — [Acstit: ¢].

As time is discrete in our present setting, we can define the temporal
operator X (next). We also introduce operators G (always) and U (until):

Mw/h=Xp <= ' e€h(w<uw , M,w'/h[=o,
Auw" € h(w < w" <w')).

Mw/hi=Gyp <= VYo' eh(w<uw , Muw'/hE)

M,w/h =y <= Fw' € h(w<w' , M,w"/hE= 1,
V" (w < w" < w',M,w"/h = ¢)

Strategies [Hor01l, BPXO01] introduce strategies into STIT theory: a strat-
egy for an agent a is a partial function o on W such that o(w) € Choice?
for each moment w from Dom(c), the domain of 0. In STIT theory it is
assumed that o may be a partial function. The reason is that there is no
need to account for choices at states an agent never arrives at by following
o. In [BPXO01, p.350] it says “A strategy need not tell us what to do at mo-
ments that the strategy itself forbids”. This contrasts with ATL, where it is
implicitly assumed that strategies are total. But, as the present comparison
between both systems reveals, for the basic ATL modalities this is not at all
necessary.

As we can see in the definition of the [ cstit: | operator, an agent’s
choice restricts the set of possible futures, in particular it restricts the histo-
ries to those corresponding with the choice being made. We expect a strategy
to be a generalization of this, in particular, we want a strategy to restrict the

“However, if we extend ATL with strategic STIT operators, as we did in [BHTO06b],
totality of strategy functions with respect to the domain of states is indeed necessary.



possible histories to those corresponding to a series of choices being made at
successive moments.

Definition 3 (admitted histories). A strategy o admits a history h if
and only if (i) Dom(c) Nh # 0 and (i) for each w € Dom(c) N h we have
h € o(w). The set of all histories admitted by a strategy o is denoted Adh(o).

We will often use the notation o,, to name a particular strategy of an
agent a.

Definition 4 (collective strategy). A collective strategy for A C Agt is a
tuple 04 = (0a)aca, and Adh(oa) = (,cs Adh(0,).

Horty [Hor01] also proposes strategies with a limited scope. To this end,
he introduces the notion of field which is a <-backward closed subset M
of Tree, = {w' | w < w' orw = w'}. With Adm(o) = {w|lw € h,h €
Adh(o)}, a strategy is properly formed in the field M if it is complete in M
(Adm(o) N M C Dom(o)) and irredundant (Dom(c) C Adm(o)). Thus, an
ability operator should be evaluated with respect to a field.

In this work, we do not need such a refinement. Therefore, for any strat-
egy at a moment w we will always consider the field to be the complete set
Tree,, that is, the backward-closed sub-tree having w as root. For evalu-
ation of formulas in the strategic setting we will use the same models and
indexes as for the non-strategic setting.’

As discussed in [Hor01], global effectivity by means of a strategy differs
from local effectivity induced by a unique (possibly collective) choice. Avail-
able choices at a moment form a partition of that moment: one history lies
in one and only one choice. But, the sets of admitted histories of the strate-
gies available at a given moment do not necessarily partition that moment.
One history can lie in the sets of admitted histories of two different strate-
gies. Therefore, since a history alone does not tell us which strategy we have
to consider, we cannot evaluate global effectivity as we have done for local
effectivity (the [_cstit: | operator). However, those semantic difficulties
are outside the scope of this paper. We refer the reader to [Hor01, Section
7.2.1] and to [BHTO06b]|, where we propose a solution to this problem in the
ATL-setting.

Horty points out that we can return to a natural evaluation by using
an operator quantifying over strategies. In particular, we can define a fused

5Tt is easy to see that actually histories are not needed to evaluate the strategic ability
operator. Horty calls this moment-determinateness of the fused operator. We nevertheless
keep the histories for uniformity purposes.
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operator for long term strategic ability of groups of agents as follows:

M,w/h = Qs[Ascstit: ] <—
do € Strategyy s.th. Vh' € Adh(o), M,w/h = ¢

where Strategy¥ = {o | Dom(co) = Treey}, is the set of strategies open to
A at moment w.5

Intended readings for {[A scstit: ¢| are: “it is strategically possible that
agents A see to it that ¢”, or “A has the ability to guarantee the truth of ¢ by
carrying out an available strategy”. Horty uses a slightly different syntax and
writes this fused operator as Q[A scstit: ¢]. We use the s-subscript for the
diamond to emphasize that it does not reflect historical possibility (written
without the s-subscript as Q) but strategic possibility. For enlightenment,
we mention the connections of this operator with Chellas’ STIT operator and
the historical necessity operator.

The strategic ability operator ( [A scstit: ¢| can be seen to be stronger
than the local ability operator ¢ _estit: _]. In particular, it holds that:

=stir O[A estit: ] — O4[A sestit: @],

This property ensures that the translation we propose in Section 5 embeds
the translation we did for CL (cf. the definition of ¢tr¢. in Section 1).

However, Q[ ecstit: ] and Q[ scstit: | are not equivalent: in the
example of Figure 1, we can imagine a strategy o, such that o,(w;) =
{h4,h5,h6}, O'a(’wg) = {hl} and O'G(’LU?,) = {h5,h6}. hl, h2 and h3 are not
admitted because they do not lie in o,(wy). Dom(o,) N hy = {w1, w3}, but
hy & 04(ws), so hy & Adh(o,). However, hs and hg are in Adh(o,), and there
are no other histories in Adh(o,). So, there exists a strategy o, such that
for every history in Adh(o,), ¢ is true some time in the future. So, for all
h € Hy,,, M,w;/h |= Qsla scstit: TUp]. However, for any h € H,, we also
have M, w,/h = Qlacstit: TU).

Note that the strategy o! with o (w,) = {hy, ha, hs} , ol (ws) = {h1}
and o! (w3) = {hs} cannot ensure that ¢ some time in the future, because
Adh(O’é) = {hl,hg}, and M,wl/h?, % TZ/{QD

In combination with the standard STIT property Oy — O[Acstit : ¢],
for nonempty coalitions A C Agt we arrive at the following property for
strategic ability:

Estir o — Os[A sestit: ¢]

6In the original definition, a set of strategies is denoted Strategy’, where M is a field
having w as root. Since we have assumed that M is always T'ree,,, our notation Strategy’y
suffices.

11



w1
oq(wr)
/ | \
Wa w3
Oq (w2 ) Oq (w3 )
/ \ | L\

14 12 24 12 12

hl h2 h3 h4 h5 h’6
Adh(a,)

Figure 1: Example of strategic STIT with one agent. It is strategically pos-
sible that agent a sees to it that some time in the future ¢.

For empty coalitions this implication strengthens to an equivalence.

Proposition 1. =g Os[0 sestit: ¢] = Oy

Proof. Since the empty coalition of agents is not assigned any choices, at
each moment w’, the empty coalition has no alternative but H,,. Hence,
Strategyy = {op} with oy(w') = H,y for all w' € Tree,,. Therefore, for all o
in Strategyy’, we have Adh(c) = H,,.

Thus M,w/h = Q[0 scstit: | <= VK € H,, M,w/h' E p. Which
corresponds to the semantics of the operator of historical necessity. O

This proposition is instrumental in our proof of Theorem 2.

4 Semantic equivalences for ATL

As a first step towards the embedding, we discuss semantic equivalence results
for interpreting ATL on ATSs. First we introduce some convenient notations:

Definition 5 (successor states / tree-order). Given an ATS M =
(W, 0,v) and an agent a € Agt:

12



o Succy(w) = {w' | w' € Qu,Q, € §(w,a)}
o Succ(w) = ﬂaeAgt Succy(w)

o w=sw = w € Succ(w)

o <; is the transitive closure of <;

Intuitively, Succ,(w) gives the possible successor states from the point of
view of agent a, and Succ(w) gives possible successor states for the complete
system of agents.

The first steps on the issue of semantical equivalence have already been
made by Wolfl [W6104], who, among other things, shows how any ATS can
be unraveled into (W, 4, v) in such a way that (W, <;) is a tree. From any
ATS we can thus construct a tree-like ATS that is bisimilar. Therefore we
may restrict our study to tree-like ATSs.

Definition 6 (tree-like ATSs). An ATS M = (W,6,v) where (W, <;) is
a tree, is called a tree-like ATS.

Now, for ATSs it is not necessarily the case that Succ,(w) = Succ(w).
The only condition on ATSs is that each intersection of choices by all mem-
bers of Agt results in a unique state. This does not guarantee that choices
for individual agents do not overlap, and it does not guarantee that there are
worlds that seem reachable from the point of view of some agents but are
actually not reachable in any simultaneous step by all agents in the system.
To be more precise, if §(w,a) = {Q1...Qn}, then both @Q; N Q; # (@ and
Uicicn @i € Succ(w) for some i and j in [1,n] are allowed. These properties
would not hold if, like in STIT, choices for individual agents would partition
the set of possible reachable worlds. In this section we will work towards
tree-like choice partitioned ATSs and show that they are bisimilar for ATL.
For these models we thus have Succ,(w) = Succ(w) for all a € Agt.

Wolfl explicitly constrains ATSs with the condition that for each agent
a and each state w, §(w, a) is a partition of the set of successor states of w.
Here we show that this explicit restriction is not necessary.

Definition 7 (choice partitioned ATSs). An ATS M = (W, 6,v) is called
a choice partitioned ATS if for all agent a € Agt and for all state w € W
the choices §(w, a) partition the set Succ(w).

Lemma 1. For any ATS M = (W, §,v) we can construct a bisimilar tree-like
and choice partitioned ATS M' = (W', v').
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Proof. We roughly follow the proof of [BARV01, Prop. 2.15|. Elements of W'
are sequences

(uo, {ur, (@1 -~ Qu)), - - (uk, (QT . Q™))

satisfying £ > 0, Agt = {a1,...,a,}, v € W, u;q1 € ﬂaeAthi, Q' €
d(a, u;). ug is intended as the root of M, and every u; is a state reached from
u; 1 by agents of Agt, applying the choice profile (Q}...Q%). Then, for
every agent a and for all w' = (ug, (u1, (Q%...Q%), ... (ug, (Q¥ ... Q1))
of W', we define ¢'(a, w') = {Q} ... @)} with:
Q= {(u, (11, (@0 Q) g (@51 QA1)
(g1, (QF ... Qu ... QFW) | 0(a,up) = {Q1...Qa--.Qa}, uri1 € Qu}

For all w' = (ug, (u1, (Q%...Q%)), ... {(ug, (Q¥'...Q% 1)), the valuation
function v’ is defined by v'(w') = v(uy).

Let w' = (ug, (uy, (Q%...Q%)), .. (up, (QF*...Q ) and Z : W —
2" defined such that w' € Z(uy). Clearly Z is a bisimulation between M
and M'. O

1 '2 1 A1 2 A1 2 A2
Qa 7Qb Qa 7Qb Qa 7Qb Qa 7Qb

Figure 2: Construction of a semantically equivalent choice partitioned ATS.
Dotted boxes correspond to d(ug,a) (resp. 6(ug,a)) and closed curves corre-
spond to d(ug, b) (resp. d(ug,b)).

As an illustration, consider a pre-ATS” M over two agents a and b. (Left
part of Figure 2.) From ug, agent a can choose either @} = {uy,us} or
@2 = {ug,uz}. Agent b can choose either Qi = {us} or Q2 = {uy,us}.
Clearly M is not choice partitioned since {Q., @*} is not a partition of
Suce(ug) (QE N Q2 # D).

We construct the equivalent choice partitioned ATS M' = (W' ', ')
by duplicating uy which can be reached by applying two different choice
profiles. (Right part of Figure 2.) Members of W' are thus uy, = (uy),

"Valuation and transition functions from ui, us and us are irrelevant.
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uy = (uO’ <u17< (lqu»)ﬂ uy = (u07 <u2,< clqu%)))v ug = (u07 <u27< g’Qé>>)

and v} = (uo, (us, (@2, Q7))). The transition function at uy is represented by

6" (ug, @) = {{uy, up}, {uz, uy}} and &'(ug, b) = {{uy, 1y}, {up, uz}}.

Lemma 1 permits us, without loss of generality, to consider only tree-
like choice partitioned ATSs. Wolfl calls these ATSs ‘restricted’. However,
as the semantic equivalence shows, this restriction is not a restriction from
the viewpoint of modal logic. We come back to the equivalence property in
Section 6.

5 From ATL to STIT logic

We define the translation ¢tr from ATL formulae to STIT formulae as:

tr(p) = [p, for p € Atm

tr(=p) = ~itr(p)

tr(p V) = tr(p) Vir(y)
tr(({(ANXyp) = Os[Asestit: Xitr(p)]
tr({{A)Gy) = Os[Ascstit: Gir(p)]
tr(((A)ypUp) = Os[Ascstit: tr(o)Utr(y)]

Translating an atom p into a modal formula [Clp may seem odd, but is
motivated by the remark on page 8. All other clauses of the translation are
straightforward, given the intended interpretation of the operators. The re-
mainder of the section is devoted to the proof of the correctness of tr.

Given a tree-like choice partitioned ATS Mar. = (WatL, d, vaTL) We as-
sociate to it a STIT model Mgt = (WstiT, Choice, <, vsTiT), as follows:

o Wstit = WatL

o w < u <= Fuy...,uy(uy = wu, = u,Vi < n(Ja € Agt,Q, €
5(ui7a)7ui—l—1 S Qa))

o Choice? = {{h|Q,Nh # 0}|Q, € d(w,a)} for all a and m
e Vh € Hy,vstir(w/h) = vare(w)

It is clear that the tree property is instrumental for (Wstit, <) being a
tree. We inherit the branching-time structure of STIT directly from the tree
structure of the ATS. Furthermore, the condition concerning partitions un-
derlying choice partitioned ATSs prevents that two choices of the same agent
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have a non-empty intersection, and therefore every C'hoice} is a partition of
H,. If intersections would possibly be non-empty, we could not have con-
structed the C'hoice function as we did: the same history could have been in
two different sets of Choicey .

Proposition 2. Mg is a discrete STIT model, and MsiT is unique.
Proof. Straightforward. O

In the following, Mgt ;T histories are maximal sequences of ATL states
respecting <. Given a history h = {wp, w1, ...} we can construct an infinite
sequence of states A = gogi ... such that: Vg; € A\, Jw; € h s.th. ¢; = wj,
¢ < ¢;iy1 and Aw € h, ¢; < w < ¢;41 (since we have identified War with
Wstit, we can thus order members of Wt with the relation <). At such
a condition we will say that h = X (slightly abusing notation). Thus, we
will indifferently use a STIT history and the corresponding ATL sequence of
states.

Lemma 2. Let u € Wy be a state in Mar. For every collective ATL
strateqy Fa from Mary, there is a collective STIT strategy o4 € Strategy’y
such that out(u, Fa) = Adh(ca4).

Proof. We assume w.l.o.g. that the ATS of Mt is a tree-like choice par-
titioned structure. Let path : Wsti1 — W,;LTL map each moment w into the
(unique) mazimal ordered sequence of states terminated by w. For all f, of
the tuple F4 we construct o, s.th.: for all u € WstiT and w' € Tree, we have

oa(w') = {hlfa(path(w’)) N h # 0}

We let 0,(w') undefined for w' outside Tree,. Let 04 = (04)aca, We want to
show that out(u, Fy) = Adh(ca).

(=) Suppose A € out(u, Fa). It means A = qoq; ... with gy = u and Vi >
0,gi+1 € (aea fa(qo - - - ¢:). According to the construction of o,, we can
say that Vi > 0,Va € A, {h|¢g;s1 € h} C 04(q), and then {h|g 1 €
h} C 04(¢;). Then the concatenation path(u)\ € Adh(oa) and thus
out(u, Fy) C Adh(c4).

(<) Suppose h € Adh(ca), and 04 € Strategyy. This means that h €
Adh(o,) for all a € A: therefore we have (i) Dom(o,) N h # () and
(ii) Vw € Dom(o,) N h,h € o4(w). By definition, u € Dom(o,) N
h,Va € A. According to the construction of o, we can say that for
all w € h that appear in Tree,, f,(path(w)) N h # (), and therefore
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(Maea fa(path(w))) Nh # 0. Because h is a maximal set of linearly or-
dered moments from W containing u, we have that h = path(u)gqs - . .

with ¢; = ﬂaeA fa(path(u)), and such that ¢;41 € ﬂaeA fa(path(g;)).
Then h € out(u, Fa) and Adh(oa) C out(u, Fy).

We conclude that out(u, Fs) = Adh(c4). O
Theorem 1. If ¢ is ATL-satisfiable then tr(p) is STIT-satisfiable.

Proof. Suppose given an ATS MatL = <WATL75; UATL) and w € Wat, s.th.
Mat,w E . W.lo.g. Mar is tree-like. We translate it into Mgt =
(WstrT, Choice, <, vstiT), as described above. Hence by Proposition 2, Mst1
is a STIT model. We prove by structural induction on ¢ that Ma,w = ¢
iff Mstir,w/h =tr(p),Vh € Hy,.

Cases of atomic formulae, negations and disjunctions are trivial, and we
here only present the cases of the modal operators.

e Case ) = ((A))X~. This means that there is an F4 s.th. for all A €
out(w, Fy) we have Mat, A[1] E 7. So by induction hypothesis, for
all X € out(w, Fy) we have Msyir, A[1]/h = tr(y) for all h € Hyp.
By Lemma 2, we know that we can construct a collective strategy
o4 € Strategy¥ s.th. out(w, Fa) = Adh(c4). So, there is o4 s.th. for
all h € Adh(o,), we have Mstit, A[1]/h = tr(y). By construction of
<, and according to the definition of the X-operator, this means that
Mstit,w/h = Xtr(y), and we obtain that Mstir, w/h = Os[A scstit:

Xtr(y))-

e Case 1) = ((A))G~. This means that there is an F4 s.th. for all A €
out(w, F4) we have Mar, Ali] E 7,Vi > 0. By induction hypothesis,
for all A € out(w, F4) we have Mst7, A[i]/h = v,Vi > 0,Vh € Hyp.
By Lemma 2, there is 04 € Strategyy s.th. forall h € Adh(o4), we have
Mstit, A[i]/h = tr(v),V¥i > 0. By construction of <, and according
to the definition of the G-operator, this means that Mstt,w/h =
Gtr(v),Yh € Adh(c,), and we obtain that Msti, w/h = Os[A scstit:
Gtr(7)].

e Case ¢ = ((A))n1Uv,. This means that there is an Fy s.th. for all
A € out(w, F4) there exists an 7 > 0 s.th. we have Mari, A[i] |E 72 and

V4,0 < j < i, MatL, Ali] = 1. Using the same arguments as before,
we get Mstit,w/h = Qs[A sestit: tr(y,)Utr(y)] for all b in H,,.

O
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In addition, for the STIT-fragment corresponding to ATL, it holds that
evaluation of formulas does not depend on the history (Horty calls this ‘mo-
ment determinedness’). This corresponds with the following property.

Proposition 3. =sr7tr(e) = Otr(p)

Proof. The proof is done by induction on the form of ¢. It uses the fact that
the logic of historical necessity [ is S5. 0

We need this proposition in our proof of Theorem 2 below.

Theorem 2. If Ear; ¢ then Estir tr(y).

Proof. We use the ATL axiomatization of [GvDO05|, and prove that transla-
tion of the axioms are valid, and that the translated inference rules preserve
validity.

(L), (T), (N), (S) and ({(A))X-Monotonicity) are axioms of Coalition
Logic. Their translation to STIT preserves validity, as we have shown in
[BHTO06a, Theorem 4.2].%

If a formula is STIT-valid, it is true at each index of each STIT model.
Then, it is obvious that the translation of ({{())) G-Necessitation) preserves
validity.

e The translation of (FPg) is
Os[A scstit: Gir(p)] = tr(p) A Qs[A sestit: X[ A sestit: Gir(p)]]-

(=) The left side of the equivalence implies that there is an index
where tr(p) holds. By Proposition 3, Estit tr(¢) — Otr(y), and
thus ¢r(p) is true at any index of the current moment. If there exists
a strategy such that ¢r(y) is globally true along admitted histories,
then the same strategy also satisfies the right part of the equivalence.
(<) The right side says there is a strategy o4 at w, let us say with
oa(w) = Q,Q € ChoiceY, s.th. at the next step, there is a strategy
o'y s.th. tr(y) is globally true. Hence, the strategy o4 at w, defined as
o't (w) = @ and Yu € Dom(d’y) \ {w}, o’i(u) = o'4(u) satisfies that A
can ensure at w that ¢r(p) is globally true along histories in Adh(c"}).

e The translation of (GF Pg) is
Os[0 scstit: G(tr(0) — (tr(p) A Os[A sestit: Xir(6)]))] —
Q5[0 sestit: G(tr(0) — Os[A sestit: Gtr(p)])]-

8The proof of the validity of the translation of the axiom (N) involves Assumption 2
about determinism.
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The left member means that it is settled that globally, if we have tr(6)
then we also have tr(p), and there is strategy s.th. tr(6) is true at the
next step. It implies that whenever ¢r(#) is true, it exists a choice par-
tition that ensures that ¢r(6) holds at the next step. Thus the strategy
o4 which as soon as tr(f) is true, chooses at each step such a choice
partition, ensures that ¢r () is globally true along histories of Adh(c4)
(and this, whatever we choose before getting tr(6)).

The translation of (F'Py) is
Os[A sestit: tr(p)Utr(p)] =

tr(p) V (tr(y) A Os[A sestit: XOg[A sestit: tr()Utr(p)]]).
We prove its validity by using the same arguments as for (FPg).

The translation of (LFPy) is

Q5[0 sestit: G((tr(p) V (tr() A Qy[A scestit: Xir(0)])) — tr(6))] —
Q5|0 sestit: G(Os[A sestit: tr(v)Utr(p)] — tr(6))].

We use the fact that Q[0 scstit : ¢] = Og (Proposition 1), that

OG(¢ — ¢) —» (OGy — OGvY) and that (a — (8 — 7)) = (B —

(¢ = 7v)). Thus, we have to prove that 8 — (o — <) with § =

OGO A scstit : tr()Utr(v)], a = OG((tr(p) V (tr(y) A Os[A sestit :

Xtr(#)])) — tr(f) and v = OGtr(h).

Suppose that M, w/h = Os[A scstit : tr(y)Utr(e)]. This means that
there is a strategy o4 s.th. VA € Adh(c4), 3w, € h, w < w; s.th.
M, wi/h = tr(e) and Ywy, w < we < wy, M, ws/h = tr(¢). By «,
tr(#) is true at wy. If wy = w then it is sufficient to conclude. Else,
we have tr(1) true at the immediate predecessor of w; on h. So by «,
we also have tr(f), since QO [A scstit : tr(6)] is true. Still, recursively
(this induction is allowed by countably infiniteness of Assumption 1)
as tr(v) is true at each ws € h s.th. w < w3 < wy, we also get tr(f) at
ws and in particular M, w/h = tr(0).

O

Corollary 1. ¢ is satisfiable in ATL iff tr(p) is satisfiable in STIT.

Proof. As an immediate corollary of Theorems 1 and 2. O

6 Discussion

The main contribution of this work has been, we believe, to build a bridge
between two formalisms with a rather different background; the STIT for-
malism originating in philosophy, and ATL originating in computer science
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(multi-agent systems). In this section, we discuss details of our embedding.
We address in what sense, and under what assumptions, ATL appears to be
a well-identified fragment of a more general and philosophically grounded
theory of agency. These assumptions are then insightful and suggestive of
a shared core between computer science and the philosophy of agency /action.

It should be noted first that Horty’s strategic ability only applies to in-
dividual agency. Hence, we had to define admitted histories for a collective
strategy, as the intersection of individual ones. However, this is a straight-
forward extension of the definition of collective choices; we believe we have
neither violated a fundamental aspect of STIT nor forced the embedding by
adding too much to the semantics.

We also added some constraints to the original STIT to guarantee that the
proposed translation works well. We view these constraints as both relevant
and harmless. The constraints are:

1. Histories are isomorphic to the set of natural numbers.

2. Vw e W, 3w € W(w <w'and (¢ 45 Sw(@) = Hu)
Intersection of agents of Agt’s choices is not only nonempty (which is
the only restriction in the original STIT) but must exactly be the set
of histories passing through a next moment.

The second condition is the simple counterpart of the ATL constraint stating
that when every agent in Agt opts for an action then the next state of the
world is completely determined. Here we just say that in STIT, the intersec-
tion of all agents of Agt’s choices must be exactly the set of histories passing
through this very completely determined moment.® As discussed in [GJ04],
the condition of determinism is not a limitation of the modelling capabili-
ties of the language, since we could introduce a neutral agent ‘nature’, in
order to accommodate non-deterministic transitions. Hence, this constraint
on ATSs should not be considered a fundamental distinction between the two
formalisms.

The main difference then concerns the first constraint, that permits us to
define the X operator, and then to grasp the concept of nert moments and
outcomes. More generally, it allows us to stick to standard LTL expressivity
for temporal properties of paths. This same assumption applies to the tem-
poral component of ATL. This imposes a particular view on time. However,

9 Actually, this condition does not explicitly refer to the next moment, but to a future
moment. It is nevertheless sufficient, because for all h € H,,, and for all w’ < w, we have
h € Hyr. ((W,<) is a tree.)
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deliberatively, Belnap and colleagues do not take a position on the nature of
time.

“For this reason the present theory of agency is immediately ap-
plicable regardless of whether we picture succession as discrete,
dense, continuous, well-ordered, some mixture of these, or what-
ever; and regardless of whether histories are finite or infinite in
one direction or the other.” ([BPX01, p.196].)

Although, from a philosophical point of view, it makes sense wanting to
be as general as possible, in computer science it is very common and natural
to model the temporal evolution of a system using a transition system. This
brings with it a view on time as being discrete. Isomorphism with the natural
numbers (and thus non-density) is often assumed in order to keep complexity
within acceptable limits, and to avoid discussions about philosophical diffi-
culties reminiscent of problems raised by presocratic philosophers typified
by Zeno of Elea: how can time proceed (i.e., how can we interpret a ‘next’
operator) if there is always a moment between two moments? This justifies
the assumption concerning isomorphism with the natural numbers.

However the differences in the temporal fragments of both frameworks do
not only concern the models, but also the syntax. In particular, note that in
STIT we can nest temporal operators without any restriction. In ATL this is
syntactically disallowed. In ATL* we do not have this restriction. However,
in some definitions for this stronger logic we cannot unravel ATSs into trees
under preservation of satisfaction of formulas.

Obviously, STIT and ATL have some striking resemblances. The concepts
of agent and choice are the same in both theories. In STIT agents are “in-
dividuals thought of as making choices, or acting, in time” (|[BPXO01, p.33|).
Belnap, as a founding father of STIT theory, has stressed that STIT agency
is not restricted to persons or intentional agents and could equally be applied
to processes making random choices. Actions are thus idealized in a way that
ignores any mental state. STIT is only interested in the causal structure of
choice, regardless of its content. To put it in yet other words, choices are
just objective possibilities of an agent, selecting some possible courses of time
and ruling out some others. All of this equally applies to ATL, where each
agent selects a set of next states, and time will go through a state in the
intersection of every agent’s selection.

Also the notion of independence of choices (or equally independence of
agents) applies to both frameworks. Agent’s choices must be non-blocking,
i.e., for each possible choice of some agent, the intersection with all possi-
ble choices of other agents is non-empty. Belnap et col. admit this to be
a fierce constraint. For instance, it follows that two agents cannot possibly
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have identical sets of choices at the same moment (except the vacuous one).
It also follows that in STIT, there are not less than [],. 4., [Choicey| histo-
ries passing through a moment w. Nevertheless the constraint is considered
commonplace. In STIT theory it has been argued that if an agent can de-
prive other agents of some of their choices, then, regardless possible priorities
in the causal order, “we shall need to treat in the theory of agency a phe-
nomenon just as exotic as those discovered in the land of quantum mechanics
by Einstein, Podolsky, and Rosen” [BPXO01, p.218].

ATL structures are not limited to trees. But, as described in [W6104], an
ATS (W, §,v) can easily be unraveled to an ATS where the transition function
§ in (W, <;) is a tree. ATL, like all other modal formalisms,!® cannot distin-
guish the original model from its unraveling into a tree. STIT and ATL thus
both embed in branching-time structures limited to trees. However, what
we show in Section 4 is stronger. Lemma 1 tells us that we can unravel any
ATS in a tree satisfying the property that choices of every agent, represented
as sets of ‘possibly chosen next states’, are partitioning the ‘possible next
states’. Hence, from any ATS, we can construct a bisimilar ATS that meets
the constraint STIT imposes to the C'hoicel functions. There is no need to
enforce this on ATL frames as in [W6104]. The property of empty intersection
of the different simultaneous classes of choice in STIT is not expressible in
modal logic.

It is worth noting that the present translation is compatible with the one
we have proposed in [BHT06a] for Coalition Logic, together with Goranko’s
translation of [A]y to ((A4))Xep.

With the completeness result for ATL in [GvDO05|, one immediate bene-
fit of our translation is to identify a complete axiomatization of a fragment
of STIT. In this sense it completes Ming Xu’s work, compiled in [BPXO01,
Part VI| about decidability, soundness and completeness of fragments of the
achievement STIT and deliberative STIT logics. As an interesting perspec-
tive, ATL model checking can be applied to a fragment of the STIT language.

A challenging research avenue is to import deontic concepts that have
been investigated in the STIT framework [HB95, Hor01] into ATL. It appears
to us that this can be done in a rather straightforward manner. We could
then further the discussion initiated in [JvdHWO04] and [Bro06| concerning
how to model obligations in ATL. Likewise, the problem of how to accom-
modate epistemic notions in ATL may benefit from the link with the STIT
framework. Alternating-time Temporal Epistemic Logic (ATEL) [vdHWO02]

10At least this is true according to Van Benthem’s definition of ‘modal logic’ as the
bisimulation-invariant subset of first order logic [Ben84].
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adds to ATL operators representing knowledge. Its aim is to deal with strate-
gies in a context of incomplete information. One of the challenges has been
identified in [Jam03]: ATEL is not expressive enough when it questions avail-
ability of strategies. As far as we know, there is no satisfactory solution using
ATL. In [HT06] we have proposed a solution in the STIT framework and thus
proved that STIT is particularly relevant for the analysis of multi-agent sys-
tems.

Finally, a legitimate question would be: “can STIT also be embedded in
ATL?”. We think not. As mentioned, the temporal fragment of STIT allows
arbitrary nesting of temporal operators. This kind of expressivity would
require ATL* as a target logic for an embedding. Another problem is that
STIT operators are not moment determinate; they evaluate to different values
depending on the history. This means that STIT theory has operators for
two separate dimensions: historical necessity and possibility operators for the
dimension of histories, and STIT operators for the dimension of moments. In
ATL, these two dimensions are not both explicitly equipped with operators;
the central operator is one-dimensional. In [BHT06b] we show how we can
add STIT expressivity to ATL. Indeed this involves turning the semantics of
ATL in a two dimensional one.

We conclude with the remark [BPX01, p.18] that STIT theory should be
understood as a formal characterization of agency, permitting to postpone
an ontology. One merit of this work is then to push a significant justification
for ATL as an elegant and well-founded framework of agency.
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