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ABSTRACT. We investigate a series of logics that allow to reason about agents’ actions, abilities,
and their knowledge about actions and abilities. These logics include Pauly’s Coalition Logic
CL, Alternating-time Temporal Logic ATL, the logic of ‘seeing-to-it-that’ (STIT), and epistemic
extensions thereof. While complete axiomatizations of CL and ATL exist, only the fragment of
the STIT language without temporal operators and without groups has been axiomatized by
Xu (called Ldm). We start by recalling a simplification of the Ldm that has been proposed
in previous work, together with an alternative semantics in terms of standard Kripke models.
We extend that semantics to groups via a principle of superadditivity, and give a sound and
complete axiomatization that we call LdmG. We then add a temporal ‘next’ operator to LdmG,
and again give a sound and complete axiomatization. We show that LdmG subsumes coalition
logic CL. Finally, we extend these logics with standard S5 knowledge operators. This enables us
to express that agents see to something under uncertainty about the present state or uncertainty
about which action is being taken. We focus on the epistemic extension of X-LdmG, noted
E-X-LdmG. In accordance with established terminology in the planning community, we call
this extension of X-LdmG the conformant X-LdmG. The conformant X-LdmG enables us to
express that agents are able to perform a uniform strategy. We conclude that in that respect, our
epistemic extension of X-LdmG is better suited than epistemic extensions of ATL.
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1. Introduction

1

The theory of agents and choice in branching time (Belnap et al., 2001) is maybe
the most prominent logic account of agency in the philosophy of action. It is a very rich
framework and it appears natural to analyse the notions of agency that are discussed in
logics for computer science and logics for social choice theory (Horty, 2001; Troquard,
2007). The aim of this paper is to unify the reasoning about what groups do, can do
and know they can do.

The theory of agents and choice in branching time is a family of logics that for-
malise the linguistic constructions of the form “agent i sees to it that ϕ holds”. (For
this reason, we will generally refer to it as stit theory.) The term deliberative stit the-
ories refers to the particular logic of Chellas STIT operators and deliberative STIT
operator. The validities of the logic were axiomatized by Xu, who called his logic
Ldm (Xu, 1998; Belnap et al., 2001). We take his logic as a starting point. First we
extend it to a group version that we call LdmG by adding a principle similar to what
is ‘superadditivity’ in social choice theory (Abdou et al., 1991). In a second step we
combine LdmG with the logic of the next-time operator X. For easy reference, we
adopt the name X-LdmG for the resulting logic.

Coalition Logic, CL for short, was proposed in (Pauly, 2001; Pauly, 2002) as a
logic for reasoning about social procedures characterized by complex strategic inter-
actions between agents, be it in terms of individuals or in terms of groups. Examples
of such procedures are fair-division algorithms or voting processes. CL facilitates
reasoning about abilities of coalitions in games by extending classical logic with op-
erators 〈[J ]〉Xϕ for groups of agents J , reading: “the coalition J has a joint strategy
to ensure that ϕ”.2 We shall show how CL can be naturally embedded in our variant
of stit theory. The embedding of CL in X-LdmG is an interesting result since it shows
how to extend CL with capabilities of reasoning about what a coalition is actually
doing (as opposed to what it could do).

In social choice theory, in particular since Harsanyi, the interaction between ability
models and epistemic models has been a main focus of research. It has been realized
that intentionality of action presupposes awareness or knowledge of the means by

1. A preliminary version of the present paper was presented at TARK 2007 (Broersen et al.,
2007)
AH: [Dominique is going to place this somewhere.]
2. We have chosen a uniform notation, deviating from the original CL and STIT notation:

– We use 〈[J ]〉Xϕ as an alternative notation for Pauly’s non-normal operator [J ]ϕ, because
the new syntax highlights both the quantifier combination ∃-∀ underlying the semantics, and
the temporal aspect.

– We use [J ]ϕ as an alternative notation for the STIT operator [J cstit : ϕ], thereby em-
phasizing that this is a normal modal necessity operator.
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which effects are ensured. Philosophers refer to this ability of agents as having the
power to ensure a condition. So, in order to say that an agent ‘can’ or ‘has the power
to’ ensure a condition, there should not only be an action in the agent’s repertoire
that ensures the condition, the agent should also know how to choose the action (see
(Lorini et al., 2007) for a discussion).

More recently the issue of ‘knowing how to act’ has come up in the logic ATEL
(van der Hoek et al., 2002) which is the epistemic extension of the logic of strategic
ability ATL (Alur et al., 2002). The problem is often referred to as the problem of
uniform strategies. In particular, ATEL does not allow to distinguish the situations
where:

1) the agent a knows it has some action/choice in its repertoire that ensures ϕ,
while, possibly, it does not know which choice ensures ϕ.

2) the agent a ‘knows how to’ / ‘can’ / ‘has the power to’ ensure ϕ.

The semantic setup of ATEL, with indistinguishability relations over states is too
coarse to distinguish these situations. In the present paper indistinguishability rela-
tions range over ‘indexes’. These more detailed semantic structures do enable us to
distinguish the above two situations.

In this paper we do not reason about series of choices, alias strategies, which is why
our starting point is CL instead of ATL. We extend X-LdmG with an S5 modal operator
for knowledge and show that the resulting complete logic, that we refer to as E-X-
LdmG, solves the problem of uniform strategies. Furthermore, the epistemic extension
enables us to define a notion of ‘seeing to it under uncertainty’. In accordance with
established terminology in the planning literature, we also call this version of STIT,
the ‘conformant STIT’.

The paper is organized as follows. In Sections 2, 3 and 4 we respectively recall
CL and ATL, their epistemic extensions, and Xu’s axiomatization Ldm of the atem-
poral and individual fragment of deliberative stit theories. In Section 5 we extend his
axiomatization to groups (LdmG), and in Section 6 we extend it with time (X-LdmG)
and provide an embedding of CL. In Section 7 we then straightforwardly extend it
with knowledge (E-X-LdmG). Finally, in Section 8 we discuss what is needed to
completely axiomatize STIT-models.

Except in Section 4 where an infinite number of agents is used, AGT is throughout
the paper a finite set of agents, and PRP is a countable set of atomic formulas. For all
the logical systems that we consider, the standard notions of theoremhood, consistency
are defined as usual, as well as validity and satisfiability.

2. Background: Coalition Logic CL and Alternating-time Temporal Logic ATL

The syntax of Coalition Logic is as follows:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | 〈[J ]〉Xϕ
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where p ranges over PRP and J ranges over the subsets of AGT . The other Boolean
connectives are defined as usual.

2.1. Coalition model semantics

For sets of agents J ⊆ AGT , J denotes the complement of J w.r.t. AGT , i.e.
J = AGT \ J .

DEFINITION 1 (EFFECTIVITY FUNCTION). — Given a set of states S, an effectivity
function is a function E : 2AGT −→ 22S

. An effectivity function is said to be:

– AGT -maximal iff for all Q ⊆ S, if S \Q 6∈ E(∅) then Q ∈ E(AGT );
– outcome monotonic iff for all Q ⊆ Q′ ⊆ S and for all J ⊆ AGT , if Q ∈ E(J)

then Q′ ∈ E(J);
– superadditive iff for all Q1, Q2, J1, J2 such that J1 ∩ J2 = ∅, Q1 ∈ E(J1) and

Q2 ∈ E(J2) imply that Q1 ∩Q2 ∈ E(J1 ∪ J2).

Intuitively, every Q ∈ E(J) is a possible outcome for which J is effective. That
is, J can force the world to be in some state of Q at the next step.

DEFINITION 2 (PLAYABLE EFFECTIVITY FUNCTION). — An effectivity function E
is said to be playable iff

1) ∀J ⊆ AGT , ∅ 6∈ E(J); (Liveness)
2) ∀J ⊆ AGT , S ∈ E(J); (Termination)
3) E is AGT -maximal;
4) E is outcome-monotonic; and
5) E is superadditive.

These five properties of effectivity functions are independent.

DEFINITION 3. — An effectivity structure is a mapping E : S −→ (2AGT −→ 22S

)
such that every E(s) is an effectivity function. An effectivity structure is playable if it
is playable for every effectivity function E(s).

We write Es(J) instead of E(s)(J).

DEFINITION 4. — A coalition model is a pair ((S, E), V ) where:

– S is a nonempty set of states;
– E : S −→ (2AGT −→ 22S

) is a playable effectivity structure;
– V : S −→ 2PRP is a valuation function.

Truth conditions are standard for the Boolean connectives and for atomic formulas.
For the modal connective we have:

M, s |= 〈[J ]〉Xϕ iff {s′ | M, s′ |= ϕ} ∈ Es(J).

Coalition Logic is a weak modal logic that does not validate the axiom of nor-
mality 〈[J ]〉X(ϕ → ψ) → (〈[J ]〉Xϕ → 〈[J ]〉Xψ) and hence does not have a standard
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Kripke semantics. The above semantics is a so-called neighborhood semantics. For
instance, the outcome monotonicity property can be reformulated as reachability of
neighborhoods being closed under supersets.

2.2. Game semantics

In (Pauly, 2001), Marc Pauly investigates an alternative semantics for CL in terms
of game structures. We introduce some notations and results that are going to be useful
later.

DEFINITION 5. — A strategic game is a tuple G = (S, Σ, o) where S is a nonempty
set, Σ associates a nonempty set Σi to every agent i ∈ AGT (a set of choices for i),
o :

∏
i∈AGT Σi −→ S is an outcome function which associates an outcome state in S

with every combination of agents’ choices (choice profile).

We write ΓS for the set of strategic games over the set of states S. For convenience,
for every coalition J ⊆ AGT , by σJ we denote a tuple of choices (σi)i∈J in a strategic
game where every σi ∈ Σi. We write σJ · σJ for the concatenation of σJ and σJ .

It appears that there is a strong link between a coalition model (whose effectivity
structure is playable by definition) and a strategic game. We define the effectivity
function of a strategic game as follows.

DEFINITION 6. — Given a strategic game G = (S, Σ, o), the effectivity function
EG : 2AGT −→ 22S

of G is defined as: for every coalition J ⊆ AGT , and every
Q ⊆ S, Q ∈ EG(J) iff there is a choice tuple σJ such that for every σJ we have
o(σJ · σJ) ∈ Q.

Pauly then gives the following characterization:

THEOREM 7 (Pauly, 2001). — An effectivity function E is playable iff it is the effec-
tivity function of some strategic game.

We now define a new class of models for CL. It merely consists of a set of states,
a function associating every state with a strategic game and an evaluation function.

DEFINITION 8. — A game model is a triple GM = (S, γ, v) where:

– S is a nonempty set of states;
– γ : S −→ ΓS associates every state with a strategic game;
– v : S −→ 2PRP .

For every s ∈ S, we write os for the outcome function of the strategic game γ(s),
and we write Σs,J for the set of choices of coalition J in γ(s).

Truth of CL formulas in a game model is as expected. In particular, for a game
model GM = (S, γ, v) and a state s ∈ S:

MG, s |= 〈[J ]〉Xϕ iff there is σJ ∈ Σs,J such that for all σJ ∈ Σs,J ,M, os(σJ ·σJ) |= ϕ.
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The function γ associates a state with a strategic game whilst a playable effectivity
structure in a Coalition model associates a state with an effectivity function. Hence,
from Theorem 7, it is easy to see that the semantics are equivalent.

2.3. Axiomatization

The set of formulas that are valid in coalition models is completely axiomatized
by the following principles (Pauly, 2001).

(ProTau) any sufficient set of propositional logic schemas

(⊥) ¬〈[J ]〉X⊥
(>) 〈[J ]〉X>
(N ) ¬〈[∅]〉X¬ϕ → 〈[AGT ]〉Xϕ

(M ) 〈[J ]〉X(ϕ ∧ ψ) → (〈[J ]〉Xϕ ∧ 〈[J ]〉Xψ)

(S) 〈[J1]〉Xϕ ∧ 〈[J2]〉Xψ → 〈[J1 ∪ J2]〉X(ϕ ∧ ψ) if J1 ∩ J2 = ∅
(MP ) from ϕ and ϕ → ψ infer ψ

(RE) from ϕ ↔ ψ infer 〈[J ]〉Xϕ ↔ 〈[J ]〉Xψ

THEOREM 9 (Pauly, 2001). — The principles (ProTau), (⊥), (>), (N ), (M ), (S),
(MP ) and (RE) are complete with respect to the class of all coalition models.

Note that the (N) axiom corresponds to AGT -maximality of the effectivity struc-
tures. It says that if a formula is not settled false, the coalition of all agents (AGT )
can always coordinate their choices to make it true. The axiom (S) corresponds to su-
peradditivity and says that two disjoint coalitions can combine their efforts to ensure
a conjunction of properties. Note that from (S) and (⊥) it follows that 〈[J1]〉Xϕ ∧
〈[J2]〉X¬ϕ is inconsistent for disjoint J1 and J2. So, two disjoint coalitions cannot
ensure opposed facts. This property is known as ‘regularity’.

2.4. ATL as a strategic extension of CL

While the CL expression 〈[J ]〉Xϕ is about the outcome of a single action to be
chosen by each agent in J , the logic ATL is about sequences of such actions, alias
extensive form. The modal operators X (‘next’), U (‘until’), G (‘henceforth’)... of
Linear-time Temporal Logic LTL allow to speak about the temporal properties of such
strategies.

CL and ATL were proposed independently, and it was shown only later that the
former can be viewed as an extension of the latter (Goranko, 2001). Indeed, the ATL-
formula 〈〈J〉〉Xϕ says that there exists a joint strategy of J such that when performed
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by its members, ϕ will hold at the next state, which boils down to the existence of a
joint action of J ensuring ϕ at the next state. The latter is exactly the reading of the
CL-formula 〈[J ]〉Xϕ.

Beyond that, the ATL-formula 〈〈J〉〉ϕUψ says that there exists a joint strategy of
J such that when performed, ϕ will hold until ψ holds, and 〈〈J〉〉Gϕ says that there
exists a joint strategy of J ensuring that ϕ holds henceforth.

We do not go into the details of semantics and axiomatics of ATL because extensive
form strategies are not relevant for the rest of the paper and refer the reader to (Goranko
et al., 2006). Our reason to mentioning ATL here is that its epistemic extension has
been studied in detail in the agents community, motivating our epistemic extension of
CL in Section 7.

3. Background: Epistemic extensions of CL and ATL

The idea of combining a logic for multi-agency with a logic for knowledge natu-
rally stems from game theory (Osborne et al., 1994).

Since the epistemic extension ATEL of Alternating-time Temporal Logic (ATL)
had been proposed in (van der Hoek et al., 2002) several refinements have been in-
vestigated. In general these logics try to give an account of what game theory calls
uniform strategies. For an overview see for instance (Jamroga et al., 2004; Jamroga et
al., 2007).

The first logic to extend ATL with an epistemic modality was ATEL. Here we prefer
to refer to that system as E-ATL for reasons of uniformity of notation. However, we
focus on the language fragment where the ‘next’ is the only temporal operator, and
present the logic E-CL. While the latter has not been studied before in the literature, it
is the simplest system where the basic features and problems of epistemic extensions
of both CL and ATL can be highlighted.

E-CL is the syntactic fusion of the basic epistemic logic S5 and CL. Semantically,
for each i ∈ AGT we add a family of equivalence relations∼i ⊆ S×S to the models.
Validity and satisfiability are defined as for CL and S5.

We do not say anything here about the different notions of group knowledge such
as distributed knowledge and common knowledge that would be required by a full
account. The reason is that the problems can already be highlighted in the individual
case. We also do not investigate axiomatizations of E-CL, and instead focus on its
limitations in expressiveness.

The problem of representing uniform strategies concerns the disambiguation of
the notion of knowing a strategy: ATEL is not expressive enough to distinguish the
sentence

“for all epistemically indistinguishable states, there exists a strategy of J
that leads to ϕ”.
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from

there exists a strategy σ of the coalition J such that for all states epistem-
ically indistinguishable for J , σ leads to ϕ.”

The former is a ∀-∃ schema of “knowing a strategy”, in philosophy referred to
as the de dicto reading. It is opposed to the de re reading exemplified by the latter
sentence, which is a ∃-∀ schema.

In Section 7 we shall argue that instead of extending CL and ATL by epistemic
modalities, it is more appropriate for modelling purposes to choose STIT-logics as a
starting point of such an enterprise.

4. Background: Xu’s logic Ldm

The logics of seeing to it that are about agents making choices among alternatives
in a branching time setting. The starting point for any stit theory is that acting is the
same as ensuring the actual world is among a set of possible worlds that satisfy the
property being secured by the action. This is the stit paraphrase thesis (Belnap et
al., 1988). For instance, “agent i closes de door” can be paraphrased as “i sees to it
that the door is closed”. In a logical language, this is rendered by the expression [i]ϕ,
reading ‘agent i sees to it that ϕ’. It follows that one of the central axioms for stit is
the so called ‘success axiom’: [i]ϕ → ϕ.

The traditional semantics of stit theories is extensively studied in Belnap et al.
(Belnap et al., 2001). It consists of a branching-time structure (BT) augmented by the
set of agents and a choice function (AC). Since in this section we are only interested
in axiom systems, we postpone the definition to Section 8.1.

In the sequel we recall the stit logic axiomatized in (Belnap et al., 2001, Chap.
17), viz. the (atemporal and individual version of) Ldm, as well as its simplification
proposed in (Balbiani et al., 2008b). For historical reasons, Ldm is sometimes referred
to as the logic of Chellas STIT.

The language of Ldm is defined by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | [i]ϕ | ¤ϕ

where p ranges over PRP and i ranges over AGT . [i]ϕ is read ‘i sees to it that ϕ’, and
¤ϕ is read ‘ϕ is settled’.3 In this section, we consider an infinite number of agents. For
convenience, AGT is identified with an initial segment of the non-negative integers:
AGT = {0, 1, 2, . . .}.

Moreover we suppose here that |AGT| ≥ 2, i.e. there are at least agents 0 and 1.

3. Usually ¤ϕ is noted Sett : ϕ, and [i]ϕ is noted [i cstit : ϕ]. Our present notation allows for
the dual constructions ♦ϕ and 〈i〉ϕ, abbreviating ¬¤¬ϕ and ¬[i]¬ϕ, respectively.
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4.1. Xu’s Axiomatics of Ldm

In (Belnap et al., 2001, Chap. 17) Xu provides an axiomatization of BT+AC va-
lidities in terms of a family of axiom schemas (AIAk). These capture a central idea of
multi-agent stit theories: agents’ choices are independent.

S5(¤) the axiom schemas of S5 for ¤

S5(i) the axiom schemas of S5 for every [i]

(¤→i) ¤ϕ → [i]ϕ

(AIAk) (♦[0]ϕ0 ∧ . . . ∧ ♦[k]ϕk) → ♦([0]ϕ0 ∧ . . . ∧ [k]ϕk)

The last item is a family of axiom schemes for independence of agents that is parame-
terized by the integer k.4

REMARK 10. — As (AIAk+1) implies (AIAk), the family of schemas can be replaced
by the single (AIA|AGT|−1) when AGT is finite. ¤

Xu’s system has the standard inference rules of modus ponens and necessitation
for ¤. From the latter necessitation rules for every [i] follow by axiom (¤→i).

THEOREM 11 (Belnap et al., 2001, Chapter 17). — An Ldm formula ϕ is valid in
BT+AC models iff ϕ is provable from the schemas S5(¤), S5(i), (¤→i), and (AIAk)
by the rules of modus ponens and ¤-necessitation.

4.2. An alternative axiomatics of Ldm

In (Balbiani et al., 2008b) an alternative axiomatics is given. To that end, it is first
proved that (AIAk) can be replaced by the family of axiom schemas

(AAIAk) ♦ϕ → 〈k〉∧0≤i<k〈i〉ϕ for k ≥ 1

(AAIAk) is called the alternative axiom schema for independence of agents. Just as
Xu’s (AIAk), (AAIAk) involves k + 1 agents.

It can then be seen that the equivalence ♦ϕ ↔ 〈1〉〈0〉ϕ is provable from (AAIA1),
(¤→i) and S5(¤). This suggests that ¤ϕ can be viewed as an abbreviation of [1][0]ϕ.
We can take this as an axiom schema:

4. Xu’s original formulation of (AIAk) resorts to k-ary difference predicates that are part of the
language expressing that i0, . . . , ik are all distinct. They are defined from an equality predicate
= whose domain is AGT . In consequence Xu’s axiomatics has to contain axioms for equality.
We here preferred not to introduce equality in order to stay with the same logical language
throughout.
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Def(¤) ¤ϕ ↔ [1][0]ϕ

It then can be proved that under Def(¤), axiom (AAIAk) can be replaced by the
family of axiom schemas of general permutation:

(GPermk) 〈l〉〈m〉ϕ → 〈n〉∧i≤k,i 6=n〈i〉ϕ for k ≥ 0

THEOREM 12 (Balbiani et al., 2008b). — A formula of Ldm is valid in BT+AC
models iff it is provable from S5(i), Def(¤), and (GPermk) by the rules of modus
ponens and [i]-necessitation.

Note that similar to Xu’s axiomatization, if AGT is finite then the single schema
(GPerm|AGT|−1) is sufficient.

REMARK 13. — If AGT = {0, 1} then the BT+AC validities are axiomatized by
Def(¤), S5(1), S5(2), and 〈1〉〈0〉ϕ ↔ 〈0〉〈1〉ϕ. Moreover, the Church-Rosser axiom
〈0〉[1]ϕ → [1]〈0〉ϕ. can be proved from S5(1), S5(2) and (GPerm1). Therefore Ldm
logic with two agents is a so-called product logic, alias a two-dimensional modal logic
(Marx, 1999; Gabbay et al., 2003). Such product logics are characterized by the per-
mutation axiom 〈0〉〈1〉ϕ ↔ 〈1〉〈0〉ϕ together with the Church-Rosser axiom. Hence
the logic of the two-agent Ldm is nothing but the product S52 = S5⊗S5. ¤

4.3. A simple semantics of Ldm

All axiom schemas are in the Sahlqvist class (Blackburn et al., 2001), and therefore
have a standard possible worlds semantics.

Kripke models are of the form M = 〈W,R, V 〉, where

– W is a nonempty set of possible worlds;
– R is a mapping associating to every i ∈ AGT an equivalence relation Ri on W

satisfying the general permutation property:
- for all w, v ∈ W and for all l, m, n ∈ AGT , if 〈w, v〉 ∈ Rl ◦ Rm then there

is u ∈ W such that: 〈w, u〉 ∈ Rn and 〈u, v〉 ∈ Ri for every i ∈ AGT \ {n};
– V is a mapping from PRP to the set of subsets of W .

When wRiv then agent i’s current choice at w admits v, or allows v, where the verb
‘allow’ has to be taken in a non-deontic sense. In other words, Ri(w) is the set of
outcomes that are possible given i’s current choice at w.

We have the usual truth condition for the modal operator:

M,w |= [i]ϕ iff M,u |= ϕ for every u such that 〈w, u〉 ∈ Ri

and the usual definitions of validity and satisfiability.

It was shown in (Balbiani et al., 2008b) that the problem of deciding satisfiability
of a formula of Ldm is NEXPTIME-complete if AGT contains at least two agents.
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5. What groups do: the group extension LdmG of Xu’s Ldm

Xu’s axiomatics of Section 4 did not take into account group agency. We now also
consider full coalitions instead of just individual agents.

The logic LdmG has the following syntax, where p ranges over elements of the set
of atomic formulas PRP , and J ranges over the set of subsets of AGT :

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | [J ]ϕ

The intended meaning of the formula [J ]ϕ is ‘agents J see to it that ϕ’. In particu-
lar, if the empty set of agents ensures that ϕ then we say that ϕ is ‘settled true’, or
‘historically necessary’.5

Other Boolean connectives are defined by abbreviations, as usual. The abbrevia-
tion 〈J〉ϕ =def ¬[J ]¬ϕ expresses that the current choices of the members of J allow
ϕ (where ‘allow’ has to be taken in a non-deontic sense).

5.1. Axiomatization

We give the following axiom schemas for LdmG.

(ProTau) any sufficient set of propositional logic schemas

S5([J ]) any sufficient set of S5-schemas, for every [J ]

(Mon) [J ]ϕ → [J ′]ϕ if J ⊆ J ′

(Indep) [J ][J ]ϕ → [∅]ϕ

Axiom (Indep) characterizes independence of agents: whenever a group J sees to it
that the other agents J see to it that ϕ, then that can only be because ϕ holds trivially,
in the sense that ϕ is settled true (alias historically necessary).

We also assume the standard inference rules of modus ponens, and necessitation
for [∅]. From the latter necessitation for every [J ] follows by the inclusion axiom
(Mon).

Note that the converse of (Indep) can be proved from (Mon), S5(∅) and S5(AGT ).
Hence, we have ` [∅]ϕ ↔ [J ][J ]ϕ.

5. The latter terms are from the stit literature. The modal operator of historic necessity ¤ there
corresponds to our [∅].
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5.2. Kripke semantics

An LdmG-model is a tuple M = (W,R, π), where:

– W is a nonempty set of worlds (alias indexes);
– R : 2AGT −→ 2(W×W ) associates equivalence relations RJ to every coalition

J ⊆ AGT such that:
- if J ⊆ J ′ then RJ ′ ⊆ RJ

- R∅ ⊆ RJ ◦RJ

– π : W −→ 2PRP is a valuation function.

As for Ldm, when wRJv then group J’s current choice at w has v as a possible
outcome (‘admits’ v). RJ ′ ⊆ RJ for J ⊆ J ′ means that bigger groups have finer
choice partitions. R∅ ⊆ RJ ◦ RJ means that historically possible worlds can be
attained by combining admission by any group and its complement.

The above conditions on R entail that R∅ = RJ ◦RJ for every J .

As the RJ are equivalence relations, by (Mon) every RJ partitions R∅. More pre-
cisely, every RJ1∪J2 is a sub-partition of both RJ1 and RJ2 , that is, RJ1∪J2 partitions
the intersection classes of RJ1 and RJ2 . The finest partition is RAGT .

Note that it does not follow that the partition RAGT consists just of the intersec-
tions of all partitions Ri. More in general it does not follow that the partition of RJ1∪J2

is exactly made up of the intersections of the classes for RJ1 and RJ2 . Again, this is
similar to the situation in CL.

The truth conditions are:

– M, w |= p iff p ∈ π(w)
– M, w |= [J ]ϕ iff for all u ∈ RJ(w), M, u |= ϕ

together with the usual definitions for the other operators.

5.3. Properties of LdmG

THEOREM 14. — LdmG is sound and complete w.r.t. the class of LdmG-models.

PROOF. — Soundness and completeness follow from Sahlqvist’s Theorem: the se-
mantic conditions correspond, via Sahlqvist’s correspondence theory, to LdmG ax-
ioms, cf. (Blackburn et al., 2001, Th. 2.42). ¥

In (Schwarzentruber, 2007; Balbiani et al., 2008a) it is shown that satisfiabil-
ity of formulas of LdmG and of X-LdmG is decidable, and that its complexity is
NEXPTIME-complete if AGT contains more than one agent.

For every J , the (independently) combined choices of J and J cover the whole
space of possible outcomes R∅. The next lemma states that this more generally holds
for any two disjoint sets of agents.
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LEMMA 15. — ` 〈∅〉ϕ → 〈J1〉〈J2〉ϕ if J1 ∩ J2 = ∅.

PROOF. — By (Indep) we have ` 〈∅〉ϕ → 〈J1〉〈J1〉ϕ. Then, by hypothesis, J1 ∩
J2 = ∅, or equivalently J2 ⊆ J1. Thus, by (Mon), ` 〈J1〉ϕ → 〈J2〉ϕ. We obtain
` 〈J1〉〈J1〉ϕ → 〈J1〉〈J2〉ϕ by standard modal principles for [J1]. We conclude that
` 〈∅〉ϕ → 〈J1〉〈J2〉ϕ. ¥

As the modal operator 〈∅〉 expresses historic possibility, the formula 〈∅〉[J ]ϕ can
be read ‘J can ensure that ϕ’, or ‘J has the ability to ensure ϕ’. The next property
highlights that J’s ability to ensure ϕ has to be identified with the other agents J
allowing J to ensure ϕ.

LEMMA 16. — ` 〈∅〉[J ]ϕ ↔ 〈J〉[J ]ϕ.

PROOF. — From the left to the right, by (Indep) we have ` 〈∅〉[J ]ϕ → 〈J〉〈J〉[J ]ϕ,
and the subformula 〈J〉[J ]ϕ on the right hand side is equivalent to [J ]ϕ by S5(J).

From the right to the left, ` 〈J〉[J ]ϕ → 〈∅〉[J ]ϕ by (Mon). ¥
We now give a theorem of LdmG that lifts Xu’s axiom (AIA1) of Section 4 from

individuals to coalitions, and that will be instrumental later in the proof of superaddi-
tivity in Theorem 23.

LEMMA 17. — ` 〈∅〉[J0]ϕ0 ∧ 〈∅〉[J1]ϕ1 → 〈∅〉([J0]ϕ0 ∧ [J1]ϕ1) for J0 ∩ J1 = ∅.

PROOF. — Suppose J0 ∩ J1 = ∅. We establish the following deduction:

1) 〈∅〉[J0]ϕ0 → 〈J1〉〈J0〉[J0]ϕ0 by Lemma 15
2) 〈∅〉[J0]ϕ0 → 〈J1〉[J0]ϕ0 from 1 by S5([J0])
3) 〈∅〉[J0]ϕ0 ∧ [J1]ϕ1 → 〈J1〉[J0]ϕ0 ∧ [J1][J1]ϕ1 from 2 by S5([J1])
4) 〈∅〉[J0]ϕ0 ∧ [J1]ϕ1 → 〈J1〉([J0]ϕ0 ∧ [J1]ϕ1)

from 3 by standard modal principles
5) 〈∅〉(〈∅〉[J0]ϕ0 ∧ [J1]ϕ1) → 〈∅〉〈J1〉([J0]ϕ0 ∧ [J1]ϕ1)

from 4 by standard modal principles
6) 〈∅〉[J0]ϕ0 ∧ 〈∅〉[J1]ϕ1 → 〈∅〉〈J1〉([J0]ϕ0 ∧ [J1]ϕ1) from 5 by S5([∅])
7) 〈∅〉[J0]ϕ0 ∧ 〈∅〉[J1]ϕ1 → 〈∅〉([J0]ϕ0 ∧ [J1]ϕ1) from 6 by (Mon) and S5([∅])

¥
REMARK 18. — Our logic LdmG contains several principles that also hold for prod-
uct logics (Gabbay et al., 2003). Indeed, for every i, j ∈ AGT the principles of per-
mutation [i][j]ϕ → [j][i]ϕ can be proved from Lemma 15, (Mon) and S5([J ]) and stan-
dard modal principles; and the Church-Rosser confluence principle 〈i〉[j]ϕ → [j]〈i〉ϕ
can be proved from permutation and S5([J ]). However, in general LdmG is still
weaker than a product logic.

From a computational perspective it is a blessing that LdmG for more than two
agents is not a product logic: it is well known that a product of three S5 modalities
already yields a not finitely axiomatizable and undecidable logic. ¤
REMARK 19. — Note that there is an interesting technical link with the definition of
common knowledge in so called ‘interpreted systems’. An interpreted system is a set
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of n agents having S5 knowledge only of their own local state. The knowledge of these
agents is thus independent in the sense that what an agent knows does not depend on
the other agents’ local states, and thus, the knowledge of other agents. We can make a
straightforward connection between interpreted systems and LdmG by comparing his-
torical necessity to common knowledge and individual choice to standard knowledge.
In LdmG, the historical necessity modality [∅] is interpreted by the reflexive transitive
closure of the accessibility relations of the choices for the individual agents and coali-
tions. This is because the role of historical necessity is to ‘gather’ all the worlds that
can be the result of agentive processes. Likewise, the notion of common knowledge
(C) is semantically defined as the reflexive transitive closure of the S5 classes of the
knowledge operators for individual agents. But then, in interpreted systems we have
that Cϕ ↔ KiKjϕ for arbitrary agents i 6= j. Note that this is analogous to the
situation in LdmG. Although properties like these are known for interpreted systems,
they are hard to find in published papers. Similar issues are discussed in (Lomuscio et
al., 2000). ¤

6. What groups can do: X-LdmG as an extension of CL

The LdmG-formula 〈∅〉[J ]ϕ allows to express that it is historically possible that J
ensures that ϕ, or in other words, that J can ensure that ϕ. But this is just the same as
the reading of the CL-formula 〈[J ]〉Xϕ given in Section 2. It should therefore be pos-
sible to view LdmG as an extension of CL. Nevertheless, things are not as straightfor-
ward as they might seem. Consider the consistent CL-formula 〈[∅]〉Xp∧〈[∅]〉X〈[∅]〉X¬p:
p will be true at the next step, and false in two steps. Its LdmG-counterpart is 〈∅〉[∅]p∧
〈∅〉[∅]〈∅〉[∅]¬p, and is inconsistent in LdmG (because it collapses to [∅]p ∧ [∅]¬p in
S5).

The reason is that although action and agency are intimately related to time, LdmG

lacks temporal operators. We now extend LdmG by the simplest modal operator of
time: the linear ‘next’ operator X. We call the result X-LdmG. We then establish that
the resulting logic is an extension of CL by translating 〈[J ]〉Xϕ to 〈∅〉[J ]Xϕ.

The language of X-LdmG extends that of LdmGby formulas of the form Xϕ,
whose intended meaning is ‘next time ϕ’.

6.1. Axiomatization

X-LdmG has the same axioms as LdmG, plus

K(X) X(ϕ → ψ) → (Xϕ → Xψ)

alt1(X) ¬X¬ϕ → Xϕ

We assume the standard inference rules of modus ponens, and necessitation for X
and [∅].
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6.2. Kripke semantics

An X-LdmG-model is a tuple M = (W,R,FX , π), where:

– M = (W,R, π) is an LdmG-model;
– FX : W −→ W is a partial function.

The truth conditions are as before, plus:

– M, w |= Xϕ iff if FX is defined at w then M, FX(w) |= ϕ.

6.3. Properties of X-LdmG

THEOREM 20. — X-LdmG is determined by the class of X-LdmG-models.

PROOF. — As for LdmG, soundness and completeness follow from Sahlqvist’s The-
orem. ¥
REMARK 21. — In X-LdmG there is no interaction between time and action: the
formula [J ]Xp ∧ X[J ]¬p is satisfiable: for example for J = {i}, i might see to it that
the door is closed at time point t + 1, while at t + 1 i is not responsible for the door
being closed. We will discuss a principle of success preservation in Section 8. ¤

6.4. Translating Coalition Logic to X-LdmG

In order to obtain an exact matching with CL we have to add two further constraints
on X-LdmG, which come in terms of the following axioms.

alt1([AGT ]) 〈AGT 〉ϕ → [AGT ]ϕ

D(X) Xϕ → ¬X¬ϕ

Axiom alt1([AGT ]) says that if every agent in the ‘grand coalition’ chooses an action
then the system behaves in a deterministic way. It follows from alt1([AGT ]) and
S5([J ]) that [AGT ]ϕ ↔ ϕ. D(X) says that time has no end.

We call the resulting logic X-LdmG + alt1([AGT ]) + D(X).

As expected, a model for X-LdmG + alt1([AGT ]) + D(X) is a X-LdmG-model
M = (W,R, FX , π), where:

– RAGT = Id;
– FX : W −→ W is a total function.

The constraint RAGT = Id means that the choices of the big coalition completely
determine the outcome: there are no other agents whose choices would be relevant.
It follows that if we want to allow for nondeterminism then we have to include an
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‘environment’, ‘nature’, or ‘god’ agent in AGT . See (Broersen et al., 2009) for a
discussion.

Now we are ready to give a translation from Coalition Logic to X-LdmG:

tr(p) = [∅]p
tr(〈[J ]〉Xϕ) = 〈∅〉[J ]Xtr(ϕ)

and homomorphic for the other connectives.

REMARK 22. — Note that as the equivalence 〈∅〉[J ]ϕ ↔ 〈J〉[J ]ϕ is LdmG-valid (cf.
Lemma 16), we might as well translate 〈[J ]〉Xϕ to 〈J〉[J ]Xtr(ϕ), which reads ‘J allow
J to see to it that ϕ. Actually one may consider that this renders more faithfully the
intended reading of 〈[J ]〉Xϕ that ‘J can ensure that ϕ whatever J does’. ¤
THEOREM 23. — If ϕ is a theorem of CL then tr(ϕ) is a theorem of X-LdmG +
alt1([AGT ]) + D(X).

PROOF. — First, the translations of the CL axiom schemas are theorems of X-LdmG

+ alt1([AGT ]) + D(X). The only non-trivial cases are axiom (S) for superadditivity,
and axiom (N) for AGT -maximality. We start with the latter:

tr(¬〈[∅]〉X¬ϕ → 〈[AGT ]〉Xϕ) = ¬〈∅〉[∅]X¬tr(ϕ) → 〈∅〉[AGT ]Xtr(ϕ). Since
[AGT ]ψ ↔ ψ by Det([AGT ]) and S5([AGT ]), and 〈∅〉[∅]ψ ↔ [∅]ψ by S5([∅]),
the translation of (N) is equivalent to ¬[∅]X¬tr(ϕ) → 〈∅〉Xtr(ϕ). This is equiv-
alent to 〈∅〉¬X¬tr(ϕ) → 〈∅〉Xtr(ϕ) which is proved a theorem from applying [∅]-
necessitation to alt1(X) and applying a variant of the K-axiom.

For the axiom (S) of superadditivity we have:
tr(〈[J1]〉Xϕ ∧ 〈[J2]〉Xψ → 〈[J1 ∪ J2]〉X(ϕ ∧ ψ)) =

〈∅〉[J1]Xtr(ϕ) ∧ 〈∅〉[J2]Xtr(ψ) → 〈∅〉[J1 ∪ J2]X(tr(ϕ) ∧ tr(ψ))
We establish the following deduction:

1) 〈∅〉[J1]Xtr(ϕ) ∧ 〈∅〉[J2]Xtr(ψ) → 〈∅〉([J1]Xtr(ϕ) ∧ [J2]Xtr(ψ))
by Lemma 17

2) [J1]Xtr(ϕ) ∧ [J2]Xtr(ψ) → [J1 ∪ J2]Xtr(ϕ) ∧ [J1 ∪ J2]Xtr(ψ) by (Mon)
3) 〈∅〉([J1]Xtr(ϕ) ∧ [J2]Xtr(ψ)) → 〈∅〉([J1 ∪ J2](Xtr(ϕ) ∧ Xtr(ψ))

from line 2 by standard modal principles
4) 〈∅〉[J1]Xtr(ϕ) ∧ 〈∅〉[J2]Xtr(ψ) → 〈∅〉[J1 ∪ J2]X(tr(ϕ) ∧ tr(ψ))

from lines 1 and 3 by standard modal principles for X.

Second, clearly the translation of modus ponens preserves validity. To prove that
the translation of CL’s (RE) preserves validity suppose tr(ϕ ↔ ψ) = tr(ϕ) ↔
tr(ψ) is a theorem of X-LdmG. We have to prove that tr(〈[J ]〉Xϕ ↔ 〈[J ]〉Xψ) =
〈∅〉[J ]Xtr(ϕ) ↔ 〈∅〉[J ]Xtr(ψ) is a theorem of X-LdmG. This follows from the theo-
remhood of tr(ϕ) → tr(ψ) by standard modal principles. ¥

Now we can turn to the proof of satisfiability preservation of the translation and
the model construction.
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THEOREM 24. — If ϕ is CL-satisfiable then tr(ϕ) is satisfiable in logic X-LdmG +
alt1([AGT ]) + D(X).

PROOF. — If ϕ is CL-satisfiable, then it is satisfiable in a game model. Suppose
MG = (S, γ, v) is a game model and s0 ∈ S is a state such that MG, s0 |= ϕ. Let
W be the set of all sequences s0σ0 . . . sKσK such that K ≥ 0 and for 0 ≤ k < K,
sk ∈ S, and σk ∈ Σsk,AGT is such that osk

(σk) = sk+1 (i.e. σk is the choice profile
at sk that leads to sk+1). Define relations RJ ⊆ W ×W as the set of couples

(s0σ0 . . . sKσK , s0σ0 . . . sKτK)
such that σJ

K = τJ
K , where σJ

K and τJ
K are the projections of σK and τK on the set

ΣsK ,J of choices for coalition J in the strategic game γ(sK). Define the function
FX : W −→ W as:

FX(s0σ0 . . . sKσK) = s0σ0 . . . sKσKsK+1σK+1

for sK+1 = osK
(σK) and for some σK+1 ∈ ΣsK+1,AGT . Define π : W −→ 2PRP

as:
(s0σ0 . . . sKσK) ∈ π(p) iff sK ∈ v(p)

We first prove that (W,R, FX , π) is a model of X-LdmG + alt1([AGT ]) + D(X),
and then prove that (W,R, FX , π), s0σ0 |= tr(ϕ).

First, RJ is clearly an equivalence relation, for every J ⊆ AGT .

Second, the condition of coalition monotony holds: suppose J ⊆ J ′ and
(s0σ0 . . . sKσK , s0σ0 . . . sKτK) ∈ RJ ′ .

Hence σJ′
K = τJ ′

K . As σJ
K and τJ

K are respectively subvectors of σJ ′
K and τJ ′

K , we must
also have σJ

K = τJ
K .

Third, we prove that R∅ ⊆ RJ ◦RJ for every J . Suppose
(s0σ0 . . . sKσK , s0σ0 . . . sKτK) ∈ R∅.

We have σK = σJ
K · σJ

K and τK = τJ
K · τJ

K , for some σJ
K ∈ ΣsK ,J , etc. Therefore

(s0σ0 . . . sK(σJ
K · σJ

K), s0σ0 . . . sK(σJ
K · τJ

K)) ∈ RJ ,
and

(s0σ0 . . . sK(σJ
K · τJ

K), s0σ0 . . . sK(τJ
K · τJ

K)) ∈ RJ .

Fourth, RAGT = Id because σAGT
K = σK = τK = τAGT

K .

Fifth, FX is a total function because ΣsK ,AGT is nonempty for every K.

It remains to establish that for all ϕ and for all s0σ0 . . . sKσK ∈ W we have
MG, sK |= ϕ iff (W,R, FX , π), s0σ0 . . . sKσK |= tr(ϕ).

We prove this by induction on the structure of ϕ.

For the base case we have: MG, sK |= p iff sK ∈ v(p) iff s0σ0 . . . sKσK ∈ π(p),
for all σK . The latter means that (W,R, FX , π), s0σ0 . . . sKσK |= [∅]p.

Negation and disjunction are straightforward. We now prove the case where the
main connective is 〈[J ]〉X.
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We have MG, sK |= 〈[J ]〉Xϕ iff there is a σJ
K ∈ ΣsK ,J such that for all σJ

K ∈
ΣsK ,J we have GM , osK (σJ

K · σJ
K) |= ϕ; Hence, by induction hypothesis

(W,R, FX , π), s0σ0 . . . sKσKosK
(σK)σK+1 |= tr(ϕ),

where σK = (σJ
K · σJ

K); for the left-to-right direction, σK+1 ∈ ΣosK
(σK),AGT is

specifically such that FX(s0σ0 . . . sKσK) = s0σ0 . . . sKσKsK+1σK+1.
This is equivalent to: there is a σJ

K ∈ ΣsK ,J such that
(W,R,FX , π), s0σ0 . . . sKσK |= Xtr(ϕ).

for all σJ
K ∈ ΣsK ,J .

This is equivalent to: there is a s0σ0 . . . sKτK ∈ W such that for all s0σ0 . . . sKσK ,
if (s0σ0 . . . sKτK , s0σ0 . . . sKσK) ∈ RJ then

(W,R,FX , π), s0σ0 . . . sKσK |= Xtr(ϕ).
Finally, this is the same as:

(W,R,FX , π), s0σ0 . . . sKσK |= 〈∅〉[J ]Xtr(ϕ).
¥

COROLLARY 25. — The formula ϕ is a theorem of CL iff tr(ϕ) is a theorem of X-
LdmG + alt1([AGT ]) + D(X).

PROOF. — The left-to-right direction is Theorem 23. The right-to-left direction fol-
lows from Pauly’s completeness result for Coalition Logic and Theorem 24. ¥

7. What groups know they (can) do: E-X-LdmG, alias conformant X-LdmG

In this section we extend our framework with an S5 knowledge operator. This
enables us to express that an agent sees to something although it is uncertain about the
present state or the action being taken. The problems with modelling uniformity of
strategies already arise with one step choices. We therefore show how, as an extension
of X-LdmG, we can easily obtain a complete system E-X-LdmG whose semantics
distinguishes between uniform and non-uniform strategies.

In the planning community uniform strategies are called conformant (Goldman et
al., 1996); they ensure a property (‘the goal’) in spite of uncertainty about the present
state. The logic presented here enables us to express this as Ki[{i}]ϕ for “agent i
knows that it sees to it that ϕ, without necessarily knowing the present state”. To be in
accordance with the established terminology in the planning community we may call
this combination of the knowledge operator and the agency operator the ‘conformant
X-LdmG’.

In (Herzig et al., 2006) we sketched how the problem can be solved in an extension
of the stit framework. In (Broersen et al., 2006a) we considered a stit-extension of ATL
that we called ATL-STIT. The logic system we present here does not have the restricted
syntax of the first presented proposal in (Herzig et al., 2006) and, in addition, has a
complete and straightforward axiomatization.

E-X-LdmG has the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | Xϕ | [J ]ϕ | Kiϕ
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where p ranges over PRP , i over AGT , and J over 2AGT (so, we do not consider
group knowledge).

7.1. Axiomatization

The axiomatization of E-X-LdmG is obtained by adding to X-LdmG the principles
of the standard epistemic logic S5 for every individual agent i.

7.2. Kripke semantics

Models of E-X-LdmG are tuples M = (W,R, FX ,∼, π) where:

– (W,R,FX , π) is a model of X-LdmG;
– ∼ is a collection of equivalence relations ∼i (one for every agent i ∈ AGT ).

THEOREM 26. — E-X-LdmG is determined by the class of models of E-X-LdmG.

PROOF. — As for the preceding logics, soundness and completeness follow from
Sahlqvist’s Theorem. ¥

7.3. Uniform choice in E-X-LdmG

To explain how logic E-X-LdmG solves the problem of uniform choice, we con-
sider two scenarios.

EXAMPLE 27. — Ann is in a room. She is blind and cannot distinguish a world
where the light is off from a world where the light is on. The light in the room is
controlled by a button that activates a timer (as often the case in public buildings).
When the button is pushed the light bulb will shine for a determinate time. When the
light is on, there is no way to switch it off. Ann can also do nothing (skip). In the
actual situation the light is off and Ann is pushing the button. ¤

Figure 1 models our example. Plain lines correspond to elements of W and dashed
lines stand for ∼Ann accessibility. The worlds of the semantics of X-LdmG and E-
X-LdmG have to be seen as state-action pairs. The states are positions before and
after execution of an action. In our model there are 6 of these positions, and they
result in 8 E-X-LdmG-worlds. We thus have the following E-X-LdmG-model M1 =
〈W,R,FX ,∼, π〉:

– W = {(1, push), (1, skip), (2, skip), (2, push)} ∪ {(k, skip) | k ∈ {3, 4, 5, 6}}
– R∅ is the smallest equivalence relation containing the set
{〈(1, push), (1, skip)〉, 〈(2, skip), (2, push)〉} ∪ {〈(k, skip) | k ∈ {3, 4, 5, 6}}

– RAnn = {〈w,w〉 | w ∈ W}
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Figure 1. The E-X-LdmG-model M1 for Example 27

– FX is defined by:
FX((1, push)) = (3, skip), FX((1, skip)) = (4, skip),
FX((2, skip)) = (5, skip), FX((2, push)) = (6, skip),
FX((k, skip)) = (k, skip), for k ∈ {3, 4, 5, 6}

– ∼Ann is the smallest equivalence relation containing the set
{〈(1, push), (2, push)〉, 〈(1, skip), (2, skip)〉}

– π is defined by:
π((1, push)) = π((1, skip)) = ‘off’
π((2, push)) = π((2, skip)) = ‘on’,
π((3, skip)) = π((5, skip)) = π((6, skip)) = ‘on’,
π((4, skip)) = ‘off’

It is not difficult to check that M1 is a genuine E-X-LdmG-model, satisfying also
all the constraints we defined for the X-LdmG-submodels. The reader may have no-
ticed that the model adds detail to the example. In particular, Ann is given the choice
between pushing and skipping only once, and “determinate time” is interpreted as for-
ever. Of course, the model is a very simple one, with only one agent in the system:
AGT = {Ann}. Ann’s actions thus coincide with system actions, and all her choices
are deterministic.

The four basic properties we consider are:

– ϕ1 = 〈∅〉[{Ann}]X on (“One of Ann’s choices ensures the light will be on”)
– ϕ2 = KAnn〈∅〉[{Ann}]X on

(“Ann knows one of her choices ensures the light will be on”)
– ϕ3 = 〈∅〉KAnn[{Ann}]X on

(“Ann knows she has the power to ensure the light is on”)
– ϕ4 = KAnn[{Ann}]X on (“Ann conformantly sees to it that the light is on”)

It is easy to check that in M1 the first three formulas are true in the first four
possible X-LdmG worlds: M1, w |= ϕ1 ∧ ϕ2 ∧ ϕ3 for all w in the set
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{(1, push), (1, skip), (2, skip), (2, push)}.
In particular, in the actual world (1, push) the third property holds, saying that Ann
has a uniform strategy to ensure the light is on. In the actual world also the fourth
property holds (M1, (1, push) |= ϕ4), while in the two worlds where Ann skips, it
does not (M1, (1, skip) 6|= ϕ4 and M1, (2, push) 6|= ϕ4).

EXAMPLE 28. — Ann is in a room. She is blind and cannot distinguish a world
where the light is off from a world where the light is on. The light in the room is
controlled by a switch. In her repertoire of actions, Ann can toggle t or remain passive
(skip, s), which correspond to switching the state of the light and maintaining the state
of the light, respectively. In the actual situation the light is off and Ann toggles. ¤

4 6

off on

offonoffon

skip

toggle skip toggleskip

21

3 5

skipskip skip

Figure 2. The E-X-LdmG-model M2 for Example 28

This example is modeled by the E-X-LdmG-model M2 that is depicted in Figure
2: M2 = 〈W,R, FX ,∼, π〉, where

– W = {(1, t), (1, s), (2, s), (2, t), (3, s), (4, s), (5, s), (6, s)}
– R∅ is the smallest equivalence relation containing the set

{〈(1, t), (1, s)〉, 〈(2, s), (2, t)〉, 〈(3, s), (3, s)〉,
〈(4, s), (4, s)〉, 〈(5, s), (5, s)〉, 〈(6, s), (6, s)〉}

– RAnn = {〈w,w〉 | w ∈ W}
– FX is defined by:

FX((1, t)) = (3, s), FX((1, s)) = (4, s),
FX((2, s)) = (5, s), FX((2, t)) = (6, s),
FX((k, s)) = (k, s), for k ∈ {3, 4, 5, 6}

– ∼Ann is the smallest equivalence relation containing the set
{〈(1, t), (2, t)〉, 〈(1, s), (2, s)〉}

– π is defined by:
π((2, t)) = π((2, s)) = π((3, s)) = π((5, s)) = ‘on’,
π((1, t)) = π((1, s)) = π((4, s)) = π((6, s)) = ‘off’

Now, in the actual world where the light is off and Ann toggles, the light will
actually be on, so the formula Xon holds. Yet, Ann does not conformantly see to it
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that the light is on, since she does not know that the light is off at the present moment.
So, the fourth of the above properties does not hold: M2, (1, t) 6|= ϕ4. Also, she
does not have a uniform strategy, and indeed the third of the above properties does
not hold either: M2, (1, t) 6|= ϕ3. The first and the second property do hold in the
actual world, since in each state Ann indeed has an action that ensures the light is
on and she knows that. But her problem is that the decision to take depends on the
state she is in, which is something she does not know: M2, w |= ϕ1 ∧ ϕ2 for all
w ∈ {(1, t), (1, s), (2, s), (2, t)}.

7.4. Comparison with ATEL

Let us compare our approach with the situation in ATEL and CL. For representing
uncertainty in ATEL a family of equivalence relations among states (one for each
agent) is assumed, interpreting a standard normal S5 operator Ki in the language.
Since in stit uncertainty relations can range over world-history pairs6 (see section 8.1,
below), the semantics of our knowledge operators is more fine-grained.

We are going to argue now that the known approaches to the problem of uniform
strategies in the literature are unlikely to succeed. Note first that in Example 2 above
we might have given different names to the actions. And there is no reason why this
renaming should be uniform. In particular, the left toggle action can be called ‘put
the light on’ and the right toggle action ‘put the light off ’. Obviously, non-uniform
renaming of actions should not influence Ann’s basic capabilities or her knowledge
concerning her capabilities. Our theory satisfies this principle, since changing the
names of the actions in the way described, does not in any way change the evalua-
tion of E-X-LdmG-formulas. In particular, Ann still does not have a uniform strategy:
using the new terminology provided by the new action names she now ‘cannot distin-
guish between putting the light on when it is off and putting the light off when it is on’.
However, none of the ATEL-based approaches in the literature satisfies the principle.
In these variants and extension of ATEL (see e.g. (Schobbens, 2004)) the following
condition is imposed on the models: if one state is indistinguishable from another,
then any action name appearing for a choice in the first state also appears as an action
name for a choice in the second state. It is clear right away that under this restriction, a
non-uniform renaming of actions may result in uncertainty relations being eliminated,
and thus in a gain in knowledge. In particular, in the renamed version of example 2
above, Ann would always be able to distinguish the two states, and there would be
no uncertainty left at all, which directly contradicts the requirement having to express
that Ann does not know a uniform strategy in this situation.

6. Or ‘indexes’, as we called them in previous sections.
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8. The relation between X-LdmG and STIT-models

The semantics of the stit operator was extensively studied by Belnap et al. (Belnap
et al., 2001). It consists of branching-time structures (BT) augmented by the set of
agents and a choice function (AC).

We focus here on discrete BT+AC models. Such models were introduced in
(Broersen et al., 2006b) in order to clarify the relation between STIT on the one hand,
and CL and ATL on the other. We show that while discrete BT+AC models validate all
the principles of our X-LdmG of Section 6, there are nevertheless BT+AC validities
that are not theorems of X-LdmG, and explore what is missing.

8.1. Semantics: discrete BT+AC models

A BT structure is of the form 〈W,<〉, where W is a nonempty set of moments,
and < is a tree-like strict ordering of these moments: for any w1, w2 and w3 in W , if
w1 < w3 and w2 < w3, then either w1 = w2 or w1 < w2 or w2 < w1. A BT structure
is discrete if for every w, u ∈ W such that w < u, either there is no v ∈ W such that
w < v < u, or there is a v ∈ W such that w < v < u and there is no v′ ∈ W such
that w < v′ < v.

A maximal set of linearly ordered moments from W is a history. When w ∈ h we
say that moment w is on the history h. As < is discrete, for every history h and w ∈ h
there is at most one moment w′ ∈ h such that w < w′.

We write Hist for the set of all histories. The set Hw = {h | h ∈ Hist, w ∈ h}
denotes the set of histories passing through w. An index is a pair w/h, consisting of a
moment w and a history h from Hw (i.e., a history and a moment in that history).

A discrete BT+AC model is a tuple M = 〈W,<,Choice, V 〉, where:

– 〈W,<〉 is a discrete BT structure;
– Choice : AGT × W → 22Hist

is a function mapping each agent i and each
moment w into a partition Choicew

i of Hw, such that
- Choicew

i 6= ∅;
- Q 6= ∅ for every Q ∈ Choicew

i ;
- for all w and all mappings sw : AGT −→ 2Hw such that sw(i) ∈ Choicew

i ,
we have

⋂
i∈AGT sw(i) 6= ∅;

– V is valuation function V : PRP → 2W×Hist.

The equivalence classes belonging to Choicew
i can be thought of as possible choices

that are available to agent i at w. Given a history h ∈ Hw, Choicew
i (h) represents the

particular choice from Choicew
i containing h, or in other words, the particular action

performed by i at the index w/h.

We say that two histories h1 and h2 are undivided at w iff there is a w′ such that
w < w′, and w′ ∈ h1 ∩ h2. An important constraint of BT + AC structures is the
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principle of no choice between undivided histories. It forces that if two histories h1

and h2 are undivided at w, then h2 ∈ Choicew
i (h1) for every agent i.

The constraint of nonempty intersection of all possible simultaneous choices of
agents (or: strategy profile) is the postulate of independence of agents.

This is generalized to groups just in the same way as for CL’s game semantics in
Section 2.2.

A formula is evaluated with respect to a model and an index:

M, w/h |= p iff w/h ∈ V (p), p ∈ PRP
M, w/h |= ¤ϕ iff M, w/h′ |= ϕ,∀h′ ∈ Hw

M, w/h |= [i]ϕ iff M, w/h′ |= ϕ,∀h′ ∈ Choicew
i (h)

M, w/h |= Xϕ iff M, w′/h |= ϕ, where w′ is the successor of w on h

and as usual for the Boolean connectives.

Hence historical necessity (or inevitability) at a moment w in a history is truth in
all histories passing through w. According to Chellas, an agent i sees to it that ϕ in a
moment-history pair w/h if ϕ holds on all histories that agree with i’s current choice.

Validity in discrete BT+AC models is defined as truth at every moment-history pair
of every discrete BT+AC-model. A formula ϕ is satisfiable in discrete BT+AC models
iff ¬ϕ is not valid in BT+AC models.

8.2. Incompleteness of X-LdmG w.r.t. discrete BT+AC models

Discrete BT+AC models clearly validate all the principles of X-LdmG. Neverthe-
less, there are BT+AC validities that are not theorems of X-LdmG. We here focus on
two such principles, the success preservation axiom:

(SuccPresrv) [J ]Xϕ → X[∅]ϕ

and the ‘coalition building axiom’:

(CB) [J1][J2]ϕ → [J1 ∩ J2]ϕ.

Both of them are valid in BT+AC models.

Axiom (SuccPresrv) reflects that what an agent does cannot be ‘undone’ in the
sense that any action changes the world irrevocably. (Of course we can think of actions
that undo the effects of earlier actions, but that is not the same.) On X-LdmG-models,
(SuccPresrv) corresponds to the constraint

– FX ◦ R∅ ⊆ RJ ◦ FX (success preservation + no choice between undivided
histories)
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where the partial function FX is viewed as a relation. Clearly, (SuccPresrv) is not
X-LdmG-valid.

Axiom (CB) is a nice generalization of (Indep) to non-disjoint groups. Roughly
speaking, (CB) says that if a group J1 influences another group J2 then this is due to
J1’s members that are also in J2. On X-LdmG-models, (CB) corresponds to

– RJ1∩J2 ⊆ RJ1 ◦RJ2

The following model shows that (CB) is not LdmG-valid (Schwarzentruber, 2007,
Theorem 16).

EXAMPLE 29. — Let AGT = {1, 2, 3}, and let M = (W,R, π), be such that W =
{w,w′}, π(w) = {p} and π(w) = ∅, and

– R∅ = R{1} = R{2} = R{3} = W ×W
– R{1,2} = R{1,3} = R{2,3} = {(w, w), (w′, w′)}

M is a LdmG-model; in particular the constraints RJ′ ⊆ RJ if J ⊆ J ′ and R∅ = RJ ◦
RJ are satisfied. But M does not satisfy the above constraint R{1} ⊆ R{1,2} ◦R{1,3}.
Therefore (CB) is not true in M : M,w |= [{1, 2}][{1, 3}]p, but M, w 6|= [{1}]p. ¤

Note that the (CB) axiom can be strengthened to an equivalence

[J1 ∩ J2]ϕ ↔ [J1][J2]ϕ

due to axiom (Mon) of X-LdmG.

8.3. Non-axiomatizability and undecidability of BT+AC validities

As we have seen, the axioms (SuccPresrv) and (CB) are valid in BT+AC-models.
Thus if we want to axiomatize the latter we have to add these axioms to X-LdmG.
It has been shown in (Herzig et al., 2008, Theorem 23) that this is not enough when
there are 3 or more agents: if the set of BT+AC validities was finitely axiomatizable
for n ≥ 3 then S5n would be finitely axiomatizable, and the latter was proved to be
impossible (Gabbay et al., 2003, Theorem 8.2).7

THEOREM 30 (Herzig et al., 2008). — There is no finite axiomatization of BT+AC
validities if there are at least 3 agents.

Moreover, due to undecidability of S5n for n ≥ 3 (Venema, 1998, Theorem 8.6),
satisfiability in BT+AC models is undecidable (Herzig et al., 2008, Theorem 22):

THEOREM 31 (Herzig et al., 2008). — The problem of satisfiability in BT+AC models
is undecidable if there are at least 3 agents.

7. A logic is called finitely axiomatizable if there is a finite set of formula schemas from whose
instances every theorem is obtained by necessitation and modus ponens.
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The main obstacle on the way to a complete axiomatization is the following prop-
erty of BT+AC-models (as well as by the Alternating Transition Systems ATS of
ATL):

– RJ1∪J2 = RJ1 ∩RJ2

This constraint is stronger than that for (CB): it can be shown that the latter entails the
former, but not the other way round. Basically, it says that the action repertoire of a
group is completely determined by the respective repertoires of its members. While
such a constraint can certainly be defended in simple cases of group actions, it may
be argued that it is not necessarily so in more complex social situations, where groups
may have actions at their disposal that are proper to them, and cannot be attached to
individuals.

Note that the fact that BT+AC models satisfy the strong constraint RJ1∪J2 =
R1 ∩ R2 does not imply that it is false that our axiomatization of X-LdmG plus the
axioms of success preservation and coalition building are complete with respect to
BT+AC semantics. While the strong constraint RJ1∪J2 = RJ1 ∩ RJ2 is clearly not
modally expressible (since intersection is not modally expressible), we might still get
completeness, see the literature on Boolean modal logic (Passy et al., 1991).

9. Concluding remarks

We have some brief concluding remarks. The establishment of complete axioma-
tizations for X-LdmG and E-X-LdmG opens up interesting perspectives on the use of
(semi)-automatic theorem provers for reasoning about properties of games. Such the-
orem provers could then also be used for conformant planning, through the established
link between planning and satisfiability checking (Kautz et al., 1992).

A natural investigation concerns the introduction of group knowledge in the present
picture. In particular the integration of common knowledge is a worth challenge: some
authors, for example Aumann, would say that our system is obsolete without it. It is
straightforward to define common knowledge in X-LdmG. However, completeness of
the resulting logic does not follow immediately, as with standard epistemic logic.

Last but not least, a clear objective is to extend the axiomatizations we gave to
the setting with extensive form games. We already studied the semantics for this
extension in (Broersen et al., 2006a). The most notable feature of the generalization
of the semantics to extensive form games is that evaluation should be defined with
respect to state-strategy pairs.
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