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We study the rational synthesis problem considering that the interaction of agents imply the consump-
tion of some shared resource/energy. We consider the problem in cooperative and non-cooperative
setting combined with careless or careful agents.

1 Introduction

Common-pool resources are those resources like water, air, coal, pastures, or fish stocks [18]. They are
non-excludable: they are out there for the taking. They are rivalrous: one player’s consumption can
limit or prevent another player to consume it. Energy also is a kind of resource that typically can be
framed as a commons [17]. In this paper, we will focus on the resource of energy, as it is understood
in the literature in Computer Science. In fact, it is both more abstract, and much more than ‘energy’: it
captures any common-pool resource that can be conveniently quantified by assigning a number to it, and
where a bigger number indicates a greater amount of the resource.

In this paper, the agents interact in a turn-based graph arena, where in each state, one player decides
which edge to follow. To each edge is associated an integer which corresponds to the energy cost incurred
by the whole system when it follows this edge. Each player has a temporal objective, expressed as an
LTL formula over the set of states.

For a long time, it was believed that common-pool resources were bound to collapse due to the ac-
tions of self-interested players, causing the resources to be depleted or spoiled. The great contribution
of E. Ostrom [18] was to evidence wide-ranging instances where this is not in fact the case, and to iden-
tify design principles of successful common-pool resource management. The models and algorithmic
solutions presented here are but a theoretical contribution. We can hope that pursued efforts in controller
synthesis for resource-sensitive multi-agent systems may yield useful engineering solutions for future
commons management.

We study cooperative synthesis problem [11]. In this problem, agent 0 holds the special role of
controller. Cooperative synthesis consists in finding a strategy for agent 0 such that in the sub-game that
it defines, there exists a Nash Equilibrium whose outcome satisfies agent 0’s objective, and never depletes
the system’s resources. For non cooperative synthesis, this must be the case for all Nash Equilibria in the
sub-game. In other words the specification of agent 0 has to hold in sustainable manner in every rational
behavior of the other agents. We will consider two types of agents: careful and careless. Careless agents
bother only for their objective. Careful agents also pay attention to not deplete the system’s resources.
(Agent 0 is always careful.)

∗A short abstract of this work was sent to Radical’19
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2 Preliminaries

2.1 Turn based games

A turn based arena is a tuple G = 〈St,(St0] . . .]Stn),s0,Agt,Edge〉, where St is a finite set of states,
(St0] . . .]Stn) is a partition of St, s0 is an initial state Agt = {0, . . . ,n} is the set of agents s.t. agent i
controls the states in Sti, and Edge is in an edge relation in St×St.

Throughout the paper we use the following notations. If Σ is a finite set, then Σ∗ is the set of finite
sequences of elements of Σ, usually called finite words. Σω is the set of infinite sequences of elements of
Σ, usually called infinite words. For every word (finite or infinite) w in Σω and every i≥ 0, we denote by
w[i] the i+1-th letter in w; we denote by w[..i] the prefix of w of size i+1 and w[i..] the suffix that starts
at the i+1-th letter. For any finite non empty word w, we define Last(w) as the last letter of w, and |w|
the length of w. A play in an arena G is an infinite word ρ = s0s1s2 . . . in Stω such that s0 is the initial
state and for all i ≥ 0, (si,si+1) ∈ Edge. Plays(G ) is the set of all the plays in the arena G . We call any
finite word in St∗ that is prefix of an element in Plays(G ) a history, Hist(G ) is the set of all the histories
of G . We also define Histi(G ) for i in Agt as follows:

Histi(G ) = {h ∈ Hist(G ) | Last(h) ∈ Sti} .

A strategy for agent i is a mapping σi : Histi(G )→ St. Once we fixed a strategy for each agent, we obtain
a strategy profile. Formally, a profile of strategies is defined as a tuple of strategies σ = 〈σ0,σ1, . . . ,σn〉.
We will sometimes economically write profile instead of profile of strategy. For 0≤ i≤ n, we denote σ̄ [i]
the strategy at the i+ 1-th position (i.e., of agent i), and by σ -i we mean the tuple obtained from σ by
removing the strategy σ [i] also called partial profile. Finally, the tuple of strategies 〈σ -i,σ

′
i 〉 is obtained

from the profile σ by substituting agent i’s strategy with σ ′i . Once a profile is chosen it induces a unique
play ρ , that we call the outcome of σ , and we denote it Out(σ). We say that a play ρ = s0s1s2 . . . is
compatible with a strategy σ [i] of agent i if ρ[0] = s0, and ∀k≥ 0, σ [i](ρ[..k]) = ρ[k+1]. Since Out(σ)
is unique we will confound σ and Out(σ) in the sequel unless unclear from the context.

A cost arena, is any tuple 〈G ,Cost〉 where G is a turn based arena, and Cost : Edge→ Z is a cost
function. Let h= s0s1 . . .snsn+1 be a history in Hist(G ), we abusively write Cost(h) to mean the extension
of Cost to histories that is Cost(h) = ∑

n
i=0 Cost(si,si+1). We denote W the largest absolute value that

appears in Cost. We also mention that we consider that values of Cost are encoded in binary, thus W is
exponential in its encoding which is of size log(W ).

2.2 Specification, payoffs and solution concepts

A specification for an agent is a subset of Stω . For every i in Agt, we denote Speci its specification.
Once we define Speci for every i in Agt, then 〈G ,Cost,Spec0, . . . ,Specn〉 is called a cost game (or
simply game). The payoff of each agent in this game is Payoff i : ρ 7→ 1 iff ρ ∈ Speci and 0 otherwise.

We say that the play ρ is feasible if for every k ≥ 1 we have Cost(ρ[..k])≥ 0, i.e., every history of ρ

induces a non negative cost. We denote the set of feasible plays of G by Feas(G ). Let σ be a profile, the
payoff of σ for agent i is Payoff i(Out(σ)). When clear from the context we simply write Payoff i(σ).
We say that σ is feasible if Out(σ) is in Feas(G ). We sometimes abusively write σ ∈ Feas(G ) instead
of Out(σ) ∈ Feas(G ).

We will consider Nash equilibria as a concept of solution. A Nash equilibrium is defined as follows:

Definition 1. Let σ be a profile, σ is a Nash equilibrium (NE) if for every agent i and every strategy σi

of i the following holds true: Payoff i(σ)≥ Payoff i(〈σ -i,σi〉) .
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Throughout this paper, we will assume that agent 0 is the agent for whom we wish to synthesize the
strategy, therefore, we use the concept of 0-fixed Nash equilibria (0-NE).

Definition 2. A profile 〈σ0, σ̄-0〉 is a 0-NE, if for every strategy σi for agent i in Agt\{0} the following
holds true: Payoff i(〈σ0,σ -0〉)≥ Payoff i(〈σ0,〈(σ -0)-i,σi〉〉) .

That is, by fixing the strategy σ0 for agent 0, the other agents cannot improve their payoff by unilat-
erally changing their strategy. We denote by 0-NE(G ) the set of all the 0-NE of G .

2.3 Careless and careful specifications and rationality

For each agent i, the specifications Speci (as thus payoff function Payoff i) will depend on a qualitative ob-
jective; and it may also depend on a quantitative objective (agent 0’s specification always does). Whether
the specifications depends or not a quantitative objective will yield careful and careless specifications.

In this paper we consider LTL qualitative specifications, i.e., each player in Agt is assigned an LTL
formula φi that represents a temporal objective they want to achieve.

The formula Xφ holds true on ρ if φ is true next. The formula φUψ holds true on ρ if φ is true at
least until ψ is true. We use 3φ as shorthand for >Uφ , i.e., eventually φ is true, and 2φ as a shorthand
for ¬3¬φ , i.e., φ is always true. Let ρ be a play in Plays(G ), if it satisfies a formula φ we write ρ |=G φ .
We sometime drop the subscript G if clear from the context. Let i be an agent, we write Obji as the set
{ρ ∈ Plays(G ) | ρ |=G φi}.

Careless specification and rationality In this setting the specification of agent 0, Spec0, is defined by
the set of plays that are in Obj0∩Feas(G ). The specification for the other agents, Speci for i in Agt\{0},
is Obji. Thus, the agents in Agt \ {0} are indifferent about the feasibility of plays. In particular, when
defining 0-NEs, they can profitably deviate even if the resulting play is not feasible. It is enough that the
resulting play satisfies their objective while the current play does not. We consider these agents careless.

Careful specification and rationality In this setting the specifications Speci for agent i in Agt is the
set plays that are in Obji∩Feas(G ). Thus, the agents in Agt \ {0} are concerned with the feasibility of
plays. In particular, when defining 0-NEs, they can profitably deviate from a profile only if the resulting
play is feasible. We consider these agents careful.

2.4 Decision problems

Now fix a game 〈G ,Cost,Spec0, . . . ,Specn〉, in both cases of careful and careless specifications, we want
to solve the following problems.

Cooperative synthesis The first problem (cf. Pb. 3) is an extension of the cooperative rational synthesis
introduced in [11] (cf. Pb. 4).

Problem 3 (Energy Cooperative Rational Synthesis). Is there a strategy σ0, and a tuple 〈σ1, . . . ,σn〉,
s.t.: 〈σ0, . . . ,σn〉 ∈ Spec0∩0-NE(G ) ?

A solution is careless if agents in Agt\{0} are considered careless. It is careful if they are considered
careful. The original problem of cooperative rational synthesis was defined in [11] and it is a qualitative
version of the previous problem:

Problem 4. Is there a strategy σ0, and a tuple 〈σ1, . . . ,σn〉, s.t.: 〈σ0, . . . ,σn〉 ∈ Obj0∩0-NE(G ) ?



R.Condurache, C.Dima, Y.Oualhadj & N. Troquard 15

Non cooperative synthesis The non cooperative setting was introduced in [14, 15] for purely quanti-
tative objectives.

Problem 5 (Energy Non-Cooperative Rational Synthesis). Is there a strategy σ0, such that for any tuple
〈σ1, . . . ,σn〉, the following holds: 〈σ0, . . . ,σn〉 ∈ 0-NE(G ) =⇒ 〈σ0, . . . ,σn〉 ∈ Spec0 ?

We also recall the original version which again, is a qualitative version of the previous problem.

Problem 6. Is there a strategy σ0, such that for any tuple 〈σ1, . . . ,σn〉, the following holds: 〈σ0, . . . ,σn〉 ∈
0-NE(G ) =⇒ 〈σ0, . . . ,σn〉 ∈ Obj0 ?

Remark 7. The careful and careless semantics in Pb. 4, and Pb. 6 coincide since the feasibility require-
ment is ignored.

Example 8. For now we focus on the cooperative version of the problem. Consider the arena depicted
in Fig. 1. In this game, the agent 0 (circle) wants to reach state (1,1,0), agent 1 wants to reach state
(0,1,0) or (1,1,0), and agent 2 wants to reach (0,0,1). Clearly from state a, agent 0 has to move the
play to state b, but since the cost of this edge is 1 he has to take the self enough times. In fact if he takes
the selfloop of state a 3 times then takes the edge toward state b. From there, agent 1 can move the play
down or right towards c. Assume he chooses the latter option, the play now is in state c and the cost
of the current history that led to c is 1. Now it is up to agent 2 to decide where the play will end; in a
careless setting he has no incentive to take the right edge but takes the edge toward (0,0,1), but this is
not a solution since the agent 0 does not satisfy his specification. In the carefully setting, agent 2 cannot
take this very edge since it costs−2, therefore his only possible move is (1,1,0). This is a solution, since
agent 0 achieves his specification and 1 has no incentive to deviate because his payoff is also 1.

a b

(0,1,0)

c

(0,0,1)

(1,1,0)
−1 −1

−1 −2

−1

+1 +1

0

0

0

Figure 1: Game where there exists a careful solution, but no careless solution exists.

A zero-sum game 〈G ,Obj〉 is a turn based arena with two agents where Spec0 = Obj ⊆ Stω and
Spec1 = Stω \Obj. We say that i has a winning strategy σ from some state s if for any strategy τ of
-i, Out(σ ,τ) is in Speci. When it is the case, we call s a winning state, and the set of winning states is
called the winning region, denoted by Win[Speci].

LTL synthesis Given an LTL formula φ defined on St, and a turn based game 〈G ,Obj〉 where Obj =
{ρ ∈ Plays(G ) | ρ |= φ}, compute Win[Obj]. This problem is 2-EXPTIME-complete [19]. It follows
from a reduction to a zero-sum parity game on an arena which is double exponential in the size of
φ . A parity game is a zero-sum game where the objective is described as follows; for some priority
function Pr : St→ N, Parity = {ρ ∈ Stω | min{Pr(s) | s ∈ Inf(ρ) is even}, where Inf(ρ) is the set of
states occurring infinitely often along ρ , i.e., Inf(ρ) = {s ∈ St | ∀i≥ 0,∃ j > i s.t. ρ[ j] = s}. Computing
the winning region in a parity game is algorithmically challenging, it is known to be in UP∩co-UP [13].
However, the 2-EXPTIME bound presented in [19] for LTL synthesis holds since the zero-sum parity
game obtained is carefully constructed and has a polynomial number of priorities and since the procedure
for parity games is exponential in the priorities but only polynomial in the number of states of the arena.

Energy-parity games An energy-parity game is a zero-sum game 〈G ,Cost,Obj〉, where Obj=Feas(G )∩
Parity. Introduced in [6], these games enjoy the following property [7]:
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Proposition 9. Let 〈G ,Cost,Obj〉 be an energy-parity game, if there exists a winning strategy from some
state s, then there exists a strategy with memory at most |St| · |Pr| ·W from s.

Prop. 9 teaches us that it is sufficient to keep track of cost accumulation up to |St| · |Pr| ·W along any
play. Note that this bound in exponential since W is encoded in binary. Computing the set Win[Obj] in
those games is an exponential task [7], i.e., computing the set Win[Obj] is in NP∩ co-NP. However, in
case St = St0 (i.e., one player game), computing such strategy can be done in polynomial time. This is
also presented in [7].
Remark 10. If we consider variants where the cost is bounded from above, we can hope for improvement
in the complexity bounds.

3 Solving Quantitative Rational Synthesis

Careless cooperative case In the careless cooperative case, we reduce the synthesis problem to one-
player energy and parity games. We show that a solution exists if and only if a strategy exists in the
obtained one-player game.

Fix an LTL formula φ over St and call Aϕ = {Q,q0,Σ,∆,F} the determinist parity automaton that
corresponds to the formula ϕ . The alphabet of Aϕ is Σ = St and transition function is ∆ : Q×St→ Q.
Then the one-player energy parity game G [Parity], is obtained as follows: The set of states StParity of
G [Parity] are the result of the product of state in Aϕ with the states in the arena G i.e. StParity = Q×St.
The edges in this game are defined by the relation

EdgeParity = {((q,s),(r, t)) ∈ (StParity)
2 | ((s, t) ∈ Edge)∧ (∆(q,s) = r))} .

The cost function in G [Parity] is defined as

CostParity((q,s),(r, t)) = c if ((q,s),(r, t)) ∈ EdgeParity, and Cost(s, t) = c .

The priority function in G [Parity] is defined by Pr((q,s)) = 0 if q ∈ F and Pr((q,s)) = 1 otherwise.
Now we fix the LTL formula φ , first consider the following formula, Φ0-NE≡

∧|Agt|
i=1 ¬φi→2¬Win[Speci]

then the automaton A is obtained for the formula φ ≡ φ0∧Φ0-NE.
Theorem 11. Finding a careless solution for Problem 3 is 2-EXPTIME-complete.

Careful cooperative case In the careful case, we adapt the solution to the purely qualitative case
proposed in [9]. We reduce the problem to a one-player parity game, where the objective is a well-
chosen LTL formula that encodes the requirements. In the careful case, however, the construction of
the parity game is more involved. We propose a new construction that allows us to keep the energy
level under check. In both semantic, we capitalize on the existence of resource bounds [7]: if a solution
exists, we know that the energy level must stay within these bounds. Hence, even though the space of the
possible configurations (state/energy level) is infinite, we can limit our attention to configurations with a
bounded energy level.

Non-cooperative setting In the non cooperative setting, one cannot rely on the existence of a resource
bound, this is somehow related to the fact that agents can use infinite memory strategy. However in the
careless semantics, we show that the rational synthesis problem reduces to a two zero-sum game where
player 1 has to ensure that the energy level is non negative along any run that satisfies the parity condition.
To the best of our knowledge, such a winning condition has never been adressed in the literature. The
case of careful agents is still an ongoing work.
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