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Abstract. Ontologies represent principled, formalised descriptions of
agents’ conceptualisations of a domain. For a community of agents, these
descriptions may significantly differ. We propose an aggregative view
of the integration of ontologies based on Judgement Aggregation (JA).
Agents may vote on statements of the ontologies, and we aim at con-
structing a collective, integrated ontology, that reflects the individual
conceptualisations as much as possible. As several results in JA show,
many attractive and widely used aggregation procedures are prone to re-
turn inconsistent collective ontologies. We propose to solve the possible
inconsistencies in the collective ontology by applying suitable weakenings
of axioms that cause inconsistencies.

1 Introduction

Social choice theory is a branch of economic theory that deals with the design
and analysis of mechanisms for aggregating opinions of individual agents to ar-
rive at a basis for a collective decision [6]. An ubiquitous example of such a
mechanism is voting, usually intended as voting on preferences in standard so-
cial choice. Recently, the model of aggregation has been applied to judgements,
or more generally to propositional attitudes, expressed in some logical setting,
in an area termed Judgement Aggregation (JA) [11, 13]. Ontologies are widely
used in Knowledge Representation to provide principled descriptions of agents’
knowledge, by presenting a clear formalisation of their conceptualisations. The
meaning of the concepts is then represented by means of a number of axioms,
which may be written in a variety of logical systems of varying expressivity [1,9].
With the exception of [15], the typical approaches to JA are usually applied to
propositional logics, modal logics, or even more general logics, but they do not
touch the problem of the possibly heterogeneous definitions of concepts used by
the agents to formalise their individual conceptualisation. Understanding what is
the meaning of a concept for a community of agents and deciding how to elect a
common conceptualisation out of possibly conflicting ones is an interesting open
problem that has several applications, for instance, in the context of political
applications of JA. In this setting, understanding what is the meaning of a con-
cept for a community of agents is crucial for modelling electoral campaigning,



where parties try to maximise their electorate by appealing to widely share-
able world views. In the context of ontology aggregation, we may think of each
ontology as a vote submitted by a voter trying to ‘elect’ a collective ontology
that adequately and fairly represents their conceptualisations. JA then provides
the formal means to assess the suitable aggregation procedures for a given ag-
gregation scenario, by defining a number of properties that aggregators may or
may not satisfy. However, many results in JA show that a significant number
of important aggregation procedures, e.g., the majority rule, fail to preserve the
consistency of the individual inputs [13, 15]. This means that, although we as-
sume that all ontologies that agents submit for aggregation are consistent, the
outcome of the aggregation may not be. A number of strategies to circumvent
inconsistency have been pursued in JA, for instance, abandoning well-known ag-
gregators in favour of aggregators that indeed preserve consistency, or restricting
the set of propositions about which the agents cast their vote to those for which
consistency can be ensured.

In this paper, we propose a novel approach. We present a well-known justified
aggregation procedure that is actually used in real collective decision problems,
viz. absolute majority rule, and we propose a computational viable methodology
based on axiom weakening to repair its possibly inconsistent outcomes. The idea
of axiom weakening is to generalise or specialise possibly conflicting concepts
with concepts that are, in some sense, as close as possible to the original ones,
but do not yield an inconsistency. Notice that, in order to generalise or specialise
a concept in an informative manner, we need to rely on a certain amount of
background information about the concepts, which shall be encoded in what we
term in this paper the reference ontology. In case we have no information about
the concepts at issue, the only way of weaken an axiom to a less constraining
one is to replace it with a trivial (i.e. tautological) axiom, that in fact imposes
no constraint at all on the agent’s conceptualisation.

Preventing inconsistencies by appealing to ‘general’ concepts, which may then
be prone to agreement although they have not been voted on by any individual,
has been suggested and legitimated in the literature on social choice and delib-
eration [5,12,14]. This is an important issue, and it also relates to the distinction
between fine vs. coarse integration of ontologies. In the case of a coarse integra-
tion, the ontology to be constructed will always contain some of the formulas
included in the individual ontologies; in the fine integration, new formulas shall
be constructed. The approach in [15] provides an example of coarse integration.
In this paper, we are after a viable definition of fine integration.

To summarise, the contributions of this paper are as follows. We consider
possible conceptualisations of agents’ opinions represented by means of ontolo-
gies written in Description Logic (DL). In particular, we focus on the basic DL
ALC [1], which is a popular language for ontology development. Secondly, we
use the methodology of social choice theory and JA of [15] to define a frame-
work for ontology aggregation. Thirdly, we use refinement operators for concept
generalisations and specialisations [4], and we apply them to repair the collec-
tive ontology by selecting adequate refinements of the axioms that caused the
inconsistency.



2 Ontologies and Description Logics

We take an ontology to be a set of formulas in an appropriate logical language,
describing our domain of interest. A significant widely used basic description
logic is ALC, which is the logic we shall be working with here. For full details
about this logic, we refer the interested reader to [1]. The language of ALC is
based on an alphabet consisting of atomic concepts names NC , and role names
NR. The set of concept descriptions is generated by the following grammar,
where A represents atomic concepts and R role names:

C ::= A | ¬C | C u C | C t C | ∀R.C | ∃R.C

We collect all ALC concepts over NC and NR in L(ALC, NC , NR). We assume a
linear order ≺ALC over ALC formulas. We do not need to attach any particular
meaning to it, but it will be helpful for coping with non-determinism and for
tie-breaking. A TBox is a finite set of concept inclusions of the form C v D
(where C and D are concept descriptions). It is used to store terminological
knowledge regarding the relationships between concepts. An ABox is a finite
set of formulas of the form A(a) (“object a is an instance of concept A”) and
R(a, b) (“objects a and b stand to each other in the R-relation”). It is used to
store assertional knowledge regarding specific objects. The semantics of ALC is
defined in terms of interpretations I = (∆I , ·I) that map each object name to
an element of its domain ∆I , each atomic concept to a subset of the domain,
and each role name to a binary relation on the domain. The truth of a formula
in such an interpretation is defined in the usual manner [1].

3 Aggregating Ontologies

Consider an arbitrary but fixed finite set Φ of ALC TBox statements over this
alphabet.1 We call Φ the agenda and any set O ⊆ Φ an ontology. We denote the
set of all those ontologies that are consistent by On(Φ). Let N = {1, . . . , n} be a
finite set of agents. Each agent i ∈ N provides a consistent ontology Oi ∈ On(Φ).
An ontology profile is a vector O = (O1, . . . , On) ∈ On(Φ)N of consistent on-
tologies, one for each agent. We write NO

ϕ := {i ∈ N | ϕ ∈ Oi} for the set of
agents that include ϕ in their ontology under profile O. Our object of study are
ontology aggregators; that is, functions F : On(Φ)N → 2Φ mapping any profile
of consistent ontologies to an ontology.

Observe that, according to this definition, the ontology we obtain as the
outcome of an aggregation process might be inconsistent. Ontology aggregators
that are consistent would be very desirable in general. Unfortunately, they also
suffer certain drawbacks. The unanimous aggregator, that accepts a formula if
every individual does, is one of these. It indeed preserves consistency: if every

1 The finite set of TBox formulas in Φ might be all TBox formulas of a certain max-
imum length or the union of all TBox formulas that a given population of agents
choose to include in their TBoxes.



Table 1. A voting scenario

LeftPolicy v RaiseWages LeftPolicy v RaiseWelfare RaiseWages u RaiseWelfare v ⊥

1 yes yes no
2 yes no yes
3 no yes yes

Maj. yes yes yes

LeftPolicy v RaiseWages
LeftPolicy v RaiseWelfare
RaiseWages u RaiseWelfare v ⊥

Fig. 1. The TBox agenda of the agents

ontology Oj is consistent, so is Fun(O). However, if the individual ontologies
are heterogeneous enough, the unanimous aggregator is likely to provide a very
poor collective ontology. At the opposite side of the spectrum, we can define the
union aggregator, that accepts any piece of information provided by at least one
agent. In this case, the collective ontology is very likely to be inconsistent.

To balance the contributions of agents better than with the unanimous and
the union aggregators, we can adopt the majority rule, which is widely applied
in any political scenarios. In our setting, the majority rule is defined as follows:
The absolute majority rule is the ontology aggregator Fm mapping any given
profile O ∈ On(Φ)N to the ontology

Fm(O) := {ϕ ∈ Φ | #NO
ϕ >

n

2
} .

Under the absolute majority rule, a formula gets accepted if and only if more than
half of the individual agents accept it. A simple generalisation of the majority
rule provides the class of quota rules, where the threshold of n

2 is replaced by
any threshold q. The majority rule, and more generally quota rules, return a
consistent ontology only on very simple agendas [15].

4 Possibly Inconsistent Collective Ontologies

The following example shows that the absolute majority rule, which is widely
used in practice, is not a consistent aggregator. Our example is a simple adap-
tation of the doctrinal paradox to the case of concept definitions [8, 13].

Consider three left-wing political leaders, i.e., three agents 1, 2, and 3, who
must agree on what is a left policy in order to coordinate their campaigns.
They vote on possible definitions of left-wing policy by casting their votes on
the TBox agenda shown in Figure 1. Each individual ontology, in particular,
formalises possible meanings that agents ascribe to what is a left-wing policy.
Suppose that the agents vote as in Table 1.

Every individual set of axioms is consistent and the concept LeftPolicy is
satisfiable in each of the individual ontologies. Agent 1, for instance, believes



LeftPolicy v RaiseWages LeftPolicy v ReduceInequality
LeftPolicy v RaiseWelfare ReduceInequality v Policy
RaiseWages v ReduceInequality LeftPolicy v Policy
RaiseWelfare v ReduceInequality

Fig. 2. A reference ontology

that a left policy must raise both the wages and the levels of welfare, ac-
cordingly this agent believes that it is possible to promote the levels of both.
Agent 2 believes that a left policy only has to raise wages, not the level of
welfare, as they believe that it is not possible to do both. Agent 3 believes
that what counts as a left policy is that it promotes the levels of welfare and
that it is not possible to increase welfare and wages at the same time. Al-
though all individual ontologies are consistent and the concept LeftPolicy is
indeed satisfiable in each Oi, the ontology obtained by applying the absolute
majority rule is not. The ontology Fm(O1, O2, O3) in this case coincides with
the full agenda of Figure 1. By accepting both LeftPolicy v RaiseWages and
LeftPolicy v RaiseWelfare, we infer LeftPolicy v RaiseWagesuRaiseWelfare, which
together with RaiseWages u RaiseWelfare v ⊥ makes the concept of LeftPolicy
unsatisfiable. Moreover, as soon as we assume that there are indeed instances
of left-wing policies, e.g., we add an ABox formula LeftPolicy(a), for some con-
stant a, to the ontology Fm(O1, O2, O3), then the collective ontology becomes
inconsistent.

To repair the outcome of the majority rule, we assume that the agents share
a certain amount of background information about the concepts at issue, that is
they appeal a reference ontology (Figure 2). With respect to the reference ontol-
ogy, there is more than one way of repairing the collective ontology. The concept
ReduceInequality is a generalisation of RaiseWelfare, and of RaiseWages. So, one
way of repairing is to weaken the axiom LeftPolicy v RaiseWages, by replacing
the concept RaiseWages with ReduceInequality. Symmetrically, one can weaken
LeftPolicy v RaiseWelfare, by generalising the concept RaiseWelfare also with
ReduceInequality. In both cases, we obtain a consistent set of axioms. Another
strategy is to weaken RaiseWages u RaiseWelfare v ⊥, for instance by specialising
the concept RaiseWages u RaiseWelfare into ⊥. However, the repaired ontology
would contain the uninformative axiom ⊥ v ⊥. Although we effectively obtain a
consistent ontology, a repair strategy would ideally avoid such an outcome when
possible. Notice that if there is no viable reference ontology—that is, there is
no information about the concepts that can be exploited for axiom weakening—
replacing conflicting informative axioms with trivial or logical axioms is the only
viable strategy.

5 Repairing Collective Ontologies

Our strategy for fixing the collective aggregated ontology relies on weakening the
axioms present in a TBox w.r.t. an ontology. Weakening an axiom essentially
amounts to refine its premise or its conclusion. In this setting, two types of



refinement operators exist: specialisation refinement operators and generalisation
refinement operators [3,10]. Given the quasi-ordered set 〈L(ALC, Nc, NR),v〉, a
generalisation refinement operator is defined as follows:

γT (C) ⊆ {C ′ ∈ L(ALC, Nc, NR) | C vT C ′} .

Whereas a specialisation refinement operator is defined as follows:

ρT (C) ⊆ {C ′ ∈ L(ALC, Nc, NR) | C ′ vT C} .

A generalisation refinement operator takes a concept C as input and returns a
set of descriptions that are more general than C, according to T . A specialisation
operator, instead, returns a set of descriptions that are more specific.

We note γ∗T (C) and ρ∗T (C) the iterated generalisation and the iterated spe-
cialisation of the concept C, respectively. As a minimal requirement, we assume
that for every concept C, we have > ∈ γ∗T (C) and ⊥ ∈ ρ∗T (C).

The following strategy is designed to use the novel generalisation and spe-
cialisation refinement operators of [4].

5.1 Axiom Weakening

Weakening an axiom C v D amounts to enlarging the set of interpretations that
satisfy the axiom. This could be done in different ways: Either by substituting
C v D with C v D′, where D′ is a more general concept than D (i.e., its
interpretation is larger); or, by modifying the axiom C v D to C ′ v D, where
C ′ is a more specific concept than C; or even by generalising and specialising
simultaneously to obtain C ′ v D′. Given an ontology O, we denote the set of
concept names of O by NO

C . We want to define a procedure to change axioms
gradually by replacing them with less restrictive axioms. Recall that γO denotes
the generalisation of a concept and ρO denotes its specialisation with respect to
a given ontology O.

Definition 1 (Axiom weakening). Given an axiom C v D of O, the set of
weakenings of C v D in O, denoted by gO(C v D) is the set of all axioms
C ′ v D′ such that

C ′ ∈ ρ∗O(C) and D′ ∈ γ∗O(D) .

If the ontology O is consistent, the weakening of an axiom in O is always
satisfied by a super set of the interpretations that satisfy the axiom. Let I =
(∆I , ·I) be an interpretation. By definition, the class of all entities that fulfill
the axiom C v D is (∆I \CI)∪DI . A weakening of C v D either specialises C,
therefore restricting CI , and accordingly extending ∆I \ CI , or generalises D,
therefore, extending DI . Moreover, note that ⊥ v > always belongs to gO(C v
D). We want to model how to repair any inconsistent set of axioms Y of ALC,
by appealing to a (consistent) reference ontology R. Notice that, even though it
is not desirable, R can be dissociated from the axioms in the collective ontology.



Algorithm 1 Fixing ontologies through weakening.

Procedure fix-ontology(O,R) . O inconsistent ontology, R reference ontology

1: while O is inconsistent do
2: Y ← mis(O) . find all minimally inconsistent subsets of O
3: for Y ∈ Y do
4: choose ψ ∈ Y, ψ′ ∈ gR(ψ) with Y \{ψ}∪{ψ′} consistent, λO(ψ,ψ′) minimal
5: O ← (O \ {ψ}) ∪ {ψ′}
6: return O

Any inconsistent set of axioms Y can in principle be repaired by means of a
sequence of weakenings of the axioms in Y with respect to R: in the worst case
these axioms are weakened to become a tautology (e.g., ⊥ v >). However, we
are interested in weakening axioms as little as possible to remain close to the
original axioms. Since every axiom in gO(C v D) is obtained by applying γ and
ρ a finite number of times, we can define λO to be a refinement distance in an
ontology O. Repair strategies can exploit this distance to guide the weakening
of axioms that are the least stringent. Moreover, by trying to minimise the
distance, we are trying to prevent non-informative (i.e., tautological) axioms to
be selected as weakenings. In principle, we can also provide refined constraints
on the generalisation and specialisation paths, e.g., by fixing an ordering of the
concepts of the ontology O that determines which concepts are to be generalised
or specialised first.

5.2 Fixing Collective Ontologies via Axiom Weakenings

When F (O) is inconsistent, we can adopt the general strategy described in
Algorithm 1 to repair it w.r.t. a given (fixed) reference ontology R.

The algorithm finds all the minimally inconsistent subsets Y1, . . . , Yn of F (O)
(e.g., using the methods from [2,16]) and repairs each of them by weakening one
of its axioms to regain consistency. From all the possible choices made to achieve
this goal, the algorithm selects one that minimizes the distance λO (line 4). This
process corrects all original causes for inconsistency, but may still produce an
inconsistent ontology [7]. Hence, the process is repeated until a consistent on-
tology is found. Notice that the algorithm is non-deterministic, since it depends
on the choice of the axiom to weaken, and the weakening selected. As such, it
can also be seen as a strategy returning a non-singleton set of ontologies (i.e.
the procedure is termed non-resolute in social choice [15]). To make it resolute,
two policies for breaking ties are required. For both, we can capitalize on the
linear order over formulas ≺ALC introduced earlier. We can define a linear order
≺xALC over axioms as follows: C v D ≺xALC E v F iff C ≺ALC E, or C = D and
D ≺ALC F .

Now, with a reference ontology R and the linear order ≺ALC fixed, the strat-
egy returns an aggregation procedure gR,≺ALC (F (O)): firstly, aggregate the in-
dividual ontologies in O, then generalise the axioms in any possible inconsistent



set of F (O) with respect to the reference ontology R, and obtain gR,≺ALC (F (O)).
We leave a detailed presentation for future work.

5.3 An Application

We illustrate our strategy by discussing the example in Section 4. We have seen
that the absolute majority rule returns an inconsistent collective ontologies. The
inconsistent ontology Fm(O) coincides, in this example, with the agenda of the
agents (Figure 1).

To apply our strategy, we have firstly to select a reference ontology R. Sup-
pose we choose the ontology in Figure 2. We exemplify how gR(Fm(O)) works
by assuming in this case that it is non-resolute. We start by choosing an ax-
iom in a minimally inconsistent subset of Fm(O) that needs to be weakened.
The whole collective ontology Fm(O) is a minimally inconsistent set. Assume
we start by LeftPolicy v RaiseWages. Then, we have to select a concept to gener-
alise or specialise. Suppose we select RaiseWages. Thus, to generalise the axiom
LeftPolicy v RaiseWages we can replace it by LeftPolicy v ReduceInequality, since
ReduceInequality is the closest generalisation to RaiseWages in the reference on-
tology R. We obtain the new ontology, where the axiom LeftPolicy v RaiseWages
has been replaced by the weaker LeftPolicy v ReduceInequality.

Alternatively, we could have started by generalising RaiseWages u RaiseWelfare
v ⊥. In this case, we have two choices, either we generalise ⊥, or we specialise
RaiseWages u RaiseWelfare. ⊥ can be generalised by any concept in the reference
ontology. RaiseWages u RaiseWelfare can here be specialised only by replacing
it with ⊥, obtaining therefore ⊥ v ⊥, which is a (non-informative) logical ax-
iom. By replacing an axiom with a logical one, the effect on the final ontology
is the same as removing the original axiom (a logical axiom does not restrict
the models of the ontology). Thus, in this case, the repaired ontology contains
LeftPolicy v ReduceInequality and LeftPolicy v RaiseWelfare.

6 Conclusion and Future Work

We proposed a novel approach to repair an inconsistent ontology, obtained by
aggregating the individual ontologies of a community of agents. Our approach is
based on the notion of axiom weakening, which amounts to the generalisation or
specialisation of concepts found in axioms that belong to minimally inconsistent
subsets. Whilst we presented a viable solution, a more extensive evaluation is
needed. Firstly, discussing good strategies for deciding a reference ontology is
crucial for the present approach. Secondly, the study of the formal properties of
the proposed algorithm and its computational complexity is required. Finally, it
is important to extend the proposed approach to a large class of description logics
and to a variety of important aggregation procedures. We leave these points for
future work.
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Schorlemmer, M.: Coherence, Similarity, and Concept Generalisation. In: Proc. of
DL 2017. CEUR (2017)

5. Dietrich, F., List, C.: Judgment aggregation by quota rules: Majority voting gen-
eralized. Journal of Theoretical Politics 19(4), 391–424 (2007)

6. Gaertner, W.: A Primer in Social Choice Theory. Oxford University Press (2006)
7. Horridge, M., Parsia, B., Sattler, U.: Justification masking in ontologies. In: KR

2012. AAAI Press (2012)
8. Kornhauser, L.A., Sager, L.G.: The one and the many: Adjudication in collegial

courts. California Law Review 81(1), 1–59 (1993)
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