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Abstract. We introduce a logic specifically designed to support reasoning about social choice
functions. The logic includes operators to capture strategic ability, and operators to capture
agent preferences. We establish a correspondence between formulae in the logic and properties
of social choice functions, and show that the logic is expressively complete with respect to
social choice functions, i.e., that every social choice function can be characterised as a formula
of the logic. We prove that the logic is decidable, and give a complete axiomatization. To
demonstrate the value of the logic, we show in particular how it can be applied to the problem
of determining whether a social choice function is strategy-proof.

1. Introduction

Social choice theory is concerned with collective decision making in situa-
tions where the preferences of the decision makers may differ (Arrow et al.,
2002). Social choice theorists have developed a range of procedures, such
as voting protocols, to support such collective decision making, and have
developed a range of criteria with which to characterise the properties of
such procedures. Such criteria are usually expressed axiomatically, and a
major concern of social choice theory is to study the extent to which decision
making procedures do or do not satisfy these axioms (May, 1952; Arrow,
1950; Gibbard, 1973; Satterthwaite, 1975).

In short, the aim of the present paper is to develop a logic that is explicitly
intended for reasoning about social choice procedures. We focus on social
choice functions, a class of social choice procedures that select a single social
outcome as a function of individual preferences. Voting procedures of the
type used in political elections throughout the democratic world are perhaps
the best-known examples of social choice functions. A voting procedure de-
termines the winner of an election as a function of the votes cast; votes can
be understood as an expression of voter preferences.

One interesting issue that arises in voting procedures is the extent to which
voters are incentivised to truthfully report their preferences when voting. For
example, suppose we have two voters, 1 and 2, who vote among three candi-
dates, x, y, and z for a role that is currently filled by x. The voting procedure
used in this example says that, if there is a unanimously preferred candidate,
then that will be chosen, otherwise the candidate x remains. Suppose the true
preferences of 1 are given by z <1 x <1 y and those of 2 are x <2 y <2 z.
If the social choice function was presented with these true preferences, can-
didate x would be chosen (since there is no consensus). However, if voter
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2 would instead claim his preferences were x <′2 z <′2 y while 1 revealed
its true preferences, then 2 would be better off, since y would be chosen,
rather than x, and agent 2 prefers y over x. This issue suggests the following
problem: Can we design a voting procedure that is “immune” to such misrep-
resentation, i.e., in which a voter can never do any better than by truthfully
reporting its preferences? The term strategy proof is used to refer to such
voting procedures. In fact, fundamental results in social choice theory tell us
that there are severe limits to the development of strategy-proof voting pro-
cedures (Gibbard, 1973; Satterthwaite, 1975), and for this reason, developing
and analysing social choice procedures is a lively and highly active research
area.

The long-term aim of our work is to develop formal tools to assist in the
analysis and design of social choice procedures. In particular, we hope to
develop techniques that will permit the automated analysis of social choice
procedures. To this end, we aim to develop logics that allow us to formally
express the properties of social choice procedures, such that these languages
may be automatically processed. Our view is that logic can provide a powerful
tool for the analysis of social choice procedures (Pauly, 2001; Wooldridge
et al., 2007). Such logics can be used as query languages for social choice
procedures: given some property P of a social choice procedure, we aim to be
able to encode the property P as an expression ρP of our language, which we
then pose as a query to an automated analysis system. Working towards the
long-term goal, the present paper presents a logic for reasoning about social
choice procedures, and in particular, for analysing strategy proofness.

The remainder of the paper is structured as follows. In Section 2 we recall
the main concepts from game theory and social choice theory that we use
throughout the paper. We then introduce our logic in Section 3. The logic
is basically a modal logic (Chellas, 1980), which derives inspiration from
the Coalition Logic of Propositional Control (CL-PC) (van der Hoek and
Wooldridge, 2005). The latter logic includes operators to capture strategic
ability. We extend this with operators for capturing agent preferences. The
basic idea is to model an agent’s preferences via atomic propositions: a propo-
sition pi

x>y will be used to represent the fact that agent i has reported that
he prefers outcome x at least as much as outcome y. The strategic abilities
of agents are captured using a CL-PC-like operator: an agent can choose
any assignment of values for its preference variables that corresponds to a
preference ordering. After presenting the syntax and semantics of the logic,
we show how the logic can be used to characterise social choice functions,
and show that the logic is expressively complete with respect to social choice
functions, i.e., that every social choice function can be characterised as a
formula of the logic. We give a complete axiomatization for the logic. To
demonstrate the value of the logic, in Section 4 we formalise some properties
of social choice functions and in particular, we show how it can be applied to
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the problem of determining whether a social choice function is strategy-proof.
We conclude in Section 5.

2. Background

In this section, we present the basic definitions of game theory and social
choice upon which we construct our framework (Dasgupta et al., 1979; Os-
borne and Rubinstein, 1994).

We begin with some notation. We assume that game forms and social
choice functions (to be defined hereafter) share the same domains of agents
and outcomes. We denote by N = {1, . . . , n} the finite set of agents (or players)
and by K the finite set of social outcomes (outcomes hereafter). We use the
letters a, b, c, . . . as constants of K. We use variables i, j, . . . to denote agents,
and outcomes will be denoted by the variables x, y, z, . . .. Typically, one can
consider that the agents are the voters and the outcomes are the candidates in
some election.

We denote by L(K) the set of linear orders over K. (A linear order here is a
relation that is reflexive, transitive, antisymmetric and total.) By using a linear
order, we are assuming the players cannot be indifferent between two distinct
outcomes. A preference relation is a linear order of outcomes. Given K and
N, a preference profile < is a tuple (<i)i∈N of preferences, where <i ∈ L(K) for
every i. The set of preference profiles is denoted by L(K)N . Note that we use
the symbol <i for a preference relation for agents, which in this case happens
to be reflexive (and we do not write ≤i for it). Also, we will use the symbol
>i with the obvious meaning, i.e., y >i x iff x <i y.

DEFINITION 1. (Social choice function). Given K and N, a social choice
function (SCF) is a single-valued mapping from the set L(K)N of preference
profiles into the set K of outcomes.

For every preference profile, a social choice function describes the desirable
outcome (from the point of view of the designer).

DEFINITION 2. (Strategic game form). Given the sets N and K, a strategic
game form is a tuple 〈N, (Ai),K, o〉 where:

Ai is a finite nonempty set of actions (or strategies) for each player i ∈ N;
o : ×i∈NAi → K assigns an outcome for every combination of actions.

A strategic game form is sometimes called a mechanism. It specifies the
agents taking part in the game, their available actions, and what outcome
results from each combination of actions. We refer to a collection (ai)i∈N ,
consisting of one action for every agent in N, as an action profile. Given an
action profile a, we denote by ai the action of the player i.

jpl.tex; 8/12/2010; 15:11; p.3



4 Troquard, van der Hoek, and Wooldridge

REMARK 1. There is a direct link between strategic game forms and social
choice functions. Any social choice function can be viewed as a game form in
which the set of actions of every agent is L(K) (think of this as the preference
profiles the agent can claim to be his), and the function o represents the social
choice function (see (Moulin, 1983)). For any SCF F, we denote its associated
game form by gF.

A strategic game is basically the composition of a strategic game form
with a collection of preference relations (one for every agent) over the set of
outcomes.

DEFINITION 3. (Strategic game). A strategic game is a tuple 〈N, (Ai),K,
o, (<i)〉 where 〈N, (Ai),K, o〉 is a strategic game form, and for each player
i ∈ N, <i is a preference relation over K.

In our context, when the actions Ai in a game 〈N, (Ai),K,
o, (<i)〉 are preference relations themselves, one should think of those as pref-
erences that i can choose to report, whereas <i, encodes i’s real preferences.

A solution concept defines for every game a set of action profiles – in-
tuitively, those that may be played through rational action. Exactly which
solution concept is used depends upon the application at hand: we will soon
introduce a well-celebrated solution concept of Nash Equilibrium (see Exam-
ple 1).

DEFINITION 4. (Solution concept). A solution concept SC is a function that
maps a strategic game form 〈N, (Ai),K, o〉 and a preference profile over K to
a subset of the action profiles.

We now introduce a simple but fundamentally important solution concept:
Nash equilibrium.

DEFINITION 5. (Nash equilibrium). Given a strategic game form
g = 〈N, (Ai),K, o〉 and a preference profile < over K the set of Nash equilibria
NE(g, <) is given as the set of action profiles in g such that no player would
benefit from deviating unilaterally from his current action. More formally,
(a1, . . . an) ∈ NE(g, <) iff for every player k and every a′k ∈ Ak, we have
o(a1, . . . a′k . . . an) <k o(a1, . . . ak . . . an).

We can now introduce the notions of implementation and truthful imple-
mentation. The problem of implementation arises because a planner does not
know the true preference profile of the players. Given a social choice function
F involving a set of players N and a set of outcomes K, the planner only knows
that every player i ∈ N has some preference <i, an element of L(K).

We first define the case of (standard) implementation. Assuming a pattern
of behaviour – a solution concept SC – the role of the planner is then to design
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a mechanism (or game form) g such that for every possible preference profile
< ∈ L(K)N , the strategic game 〈g, <〉 admits at least one SC-equilibrium, and
every SC-equilibrium leads to the outcome in K which is prescribed by the
social choice function for the preference profile at hand, that is, the value of
F(<).

<2

<1

y

x

<′1

<′2

x

z

a1

a2

a′2

x

z

a1

a′1

a2

a′2

G = 〈g, (<1, <2)〉

F

a′1

SC
x

G′ = 〈g, (<′1, <
′
2)〉

x

y

SC
y

Figure 1. Implementation. The preference profiles < and <′ are two arbitrary members of
L(K)N . The left part represents the SCF F. F(<1, <2) = y and F(<′1, <

′
2) = x. The right part

represents the strategic game form g instantiated, in the upper part with the preference profile
(<1, <2) (game G = 〈g, (<1, <2)〉) and in the lower part with the preference profile (<′1, <

′
2)

(game G′ = 〈g, (<′1, <
′
2)〉). All the SC-equilibria of G (and possibly also some others than

(a′1, a
′
2)) lead to F(<1, <2). In a like manner, all the SC-equilibria of G′ lead to F(<′1, <

′
2). This

has to be verified for every preference profile in L(K)N and not only < and <′: if it holds, g is
said to SC-implement F.

DEFINITION 6. (Implementation). Given a solution concept SC, we say that
the game form g = 〈N, (Ai),K, o〉 SC-implements the social choice function
F if for every preference profile < ∈ L(K)N we have that SC(g, <) , ∅ and

a∗ ∈ SC(g, <) implies that o(a∗) = F(<)

In words: the game form g SC-implements F if for any game form 〈g, <〉
based on g, any outcome associated to a strategy profile in the solution con-
cept SC is the same as what the social choice function would yield for the
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preference <. Or, more loosely: the game form g implements F if, for every
preference profile < that we can associate with it, the outcomes in the game
〈g, <〉 and the result of F(<) agree at least on those claimed preferences that
are in the solution concept of the game.

The problem of implementation is illustrated in Figure 1. We say that the
social choice function is SC-implementable if there is a game form that SC-
implements it.

In some situations however, an SCF can be implemented by a strategic
game form of which the space of action profiles corresponds to the space of
preference profiles, and telling the truth is an equilibrium. We call a strategic
game form in which the set of strategies of a player i is the set of preferences
over K a direct mechanism. Hence, each player is asked to report a preference,
but not necessarily the true one. An appealing class of direct mechanisms is
that in which reporting the true preference profile is an equilibrium of the
game consisting of the direct mechanism composed with the true preference
profile. That is, for every <∈ L(K)N , the action profile where every player i
reports its true preference <i is an equilibrium of the game 〈g, <〉. We can
define this notion for every solution concept SC.

SC

<2

<1

y

x

<′1

<′2

SC

G′ = 〈gF , (<′1, <
′
2)〉

<2

<1

y

x

<′1

<′2

G = 〈gF , (<1, <2)〉

Figure 2. Truthful implementation. The preference profiles < and <′ are two arbitrary mem-
bers of L(K)N . The left part represents the game form gF associated to the SCF F when
the preferences of the two players are <1 and <2. The game G = 〈gF , (<1, <2)〉 admits an
equilibrium at the action profile (<1, <2). The right part represents gF when the preferences
of the two players are <′1 and <′2. The game G′ = 〈gF , (<′1, <

′
2)〉 admits an equilibrium at the

action profile (<′1, <
′
2). This has to be verified for every preference profile in L(K)N and not

only < and <′: if it holds, gF is said to truthfully SC-implement F.
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DEFINITION 7. (Truthful implementation). The direct mechanism g = 〈N,
(Ai),K, o〉 truthfully SC-implements the SCF F if for every true preference
profile < and reported profile a∗ with a∗i =<i for every i:

a∗ ∈ SC(g, <), and o(a∗) = F(<)

In words: g is a truthful SC-implementation of F if, for every profile <,
whenever the agents declare that to be their real preferences, this a solution
concept SC, and the outcome in the game and the function F are the same.
The problem of truthful implementation is illustrated on Figure 2. We say that
the social choice function is truthfully SC-implementable if there is a game
form that truthfully SC-implements it. Note that truthful implementations
only require that the report of the true preference profile is an equilibrium,
but it is not required that this equilibrium is unique. In general, other equi-
libria could be present that would not lead to the outcome prescribed by the
SCF. However, this notion of implementation can be motivated. Indeed, it is
assumed that playing a direct mechanism, if casting the real preference is an
equilibrium strategy, an agent would be sincere.

We illustrate the differences between the problems of implementation with
some simple examples (a ‘minimal’ social choice scenario with only two vot-
ers and two alternatives), which demonstrates that the two notions are contin-
gent and independent: a game form g can be both a truthful SC-implementation
and an SC-implementation of a social function F, it can be both, and it can be
either of them without being the other.

EXAMPLE 1. In this example we define some simple social choice func-
tions, for all of them we set N = {1, 2} and K = {a, b}. Also, for the sake of
comparison between standard and truthful implementations, we only consider
direct mechanisms, since truthful implementations are not defined otherwise.

First, consider the function H for which we claim that its associated game
form gH truthfully NE-implements H but gH does not NE-implement it. H is
the social choice function prescribing the outcome b if and only both agents
prefer b over a. We write [a, b] for the individual order of preferences of the
outcome a over the outcome b and [b, a] for the individual preference of b
over a. Hence, we have:

H([a, b], [a, b]) = H([a, b], [b, a]) = H([b, a], [a, b]) = a;
H([b, a], [b, a]) = b.

Figure 3 represents the four possible games 〈gH , <〉where <∈ L({a, b}){1,2}.
In each of them, the circles indicate the action profiles that are Nash equilib-
ria. The outcomes in bold are the outcomes o(a∗) for which a∗ = <: in those
outcomes, players have revealed their true preferences. So for instance, the
outcome a in the upper left corner of the game 〈gH , ([a, b], [a, b])〉 reads:
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�

�
a a

a b

aa

a b

aa

a b

a a

a b

[a, b] [b, a] [a, b] [b, a]

[a, b]

[b, a]

[a, b]

[b, a]

[a, b]

[b, a]

[a, b] [b, a] [a, b] [b, a]

[a, b]

[b, a]

d

〈gH , ([a, b], [a, b])〉 〈gH , ([a, b], [b, a])〉

〈gH , ([b, a], [b, a])〉〈gH , ([b, a], [a, b])〉

Figure 3. gH does not NE-implement H. But gH truthfully NE-implements H.

‘the outcome in the game here is a and the voters reveal their true prefer-
ences’. For every preference profile <, the ticks � indicate that the action
profile < leads to the outcome prescribed by the social choice function H
and is a Nash equilibrium in the game 〈gH , <〉; Hence the game form gH

truthfully NE-implements H: all the bold outcomes are ticked. The cross d
designates a problem with the (standard) implementation of H by gH: in the
game 〈gH , ([b, a], [b, a])〉 the action profile ([a, b], [a, b]) is a Nash equilib-
rium and leads to the outcome a, however H([a, b], [a, b]) = b. Hence, gH

does not NE-implement H.
Let us next consider the social choice function J which is dictatorial for

player 1, i.e., J is defined by

J([a, b], [a, b]) = J([a, b], [b, a]) = a;
J([b, a], [a, b]) = J([b, a], [b, a]) = b.

The four possible games 〈gJ , <〉 for J are depicted in Figure 4. It is easy
to see that the circled outcomes in those games are Nash equilibria: they give
the preferred outcome for 1 (so 1 cannot improve by deviating) and they are
the same in a fixed row (so 2 cannot change the outcome). Moreover, it is
also a straightforward check that for all those Nash equilibria, the outcome
in the game 〈gJ , <〉 is the same as J(<) (for instance, in the top left game, both
equilibria yield a which coincides with J([a, b], [a, b]), and in the bottom left
game, both equilibria yield b = J([b, a], [a, b]), etc): this justifies the ticks �.
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a a

b

aa

b

aa

b

a a

b

[a, b] [b, a] [a, b] [b, a]

[a, b]

[b, a]

[a, b]

[b, a]

[a, b]

[b, a]

[a, b] [b, a] [a, b] [b, a]

[a, b]

[b, a]b b

bb

〈gJ , ([a, b], [b, a])〉〈gJ , ([a, b], [a, b])〉

〈gJ , ([b, a], [a, b])〉 〈gJ , ([b, a], [b, a])〉

� �� �

����

Figure 4. gJ both NE-implements and truthfully NE-implements J.

So g NE-implements J. To show that g also truthfully NE-implements J, we
need to check that all the bold outcomes in Figure 4 are circled and ticked �.

Next, to give an example of an NE-implementation that is not a truthful
one, consider the game form gJ

−. It is mathematically equivalent to the game
form gJ: the outcomes a and b are only inverted. Playing gJ

−, the player 1
would simply play the contrary to his true preference. This always yields a
Nash equilibrium and the outcomes are always as prescribed by J. Hence, like
gJ , the game form gJ

− is an NE-implementation of the social choice function
J. However, since the player 1 needs to trick the game in order achieve a
Nash equilibrium, it is easy to see that gJ

− does not truthfully NE-implement
J. The crosses d on Figure 5 mark the action profiles that correspond to the
true preferences of the players, and we can see that their respective outcome
always fails to be as prescribed by J.

Finally, we argue that it is possible for a game form to be neither a NE-
implementation nor a truthful implementation of a given function: take P such
that P(<) = a for all profiles <. Moreover, for all <, let all outcomes in the
matrix for 〈gP, <〉 be b. For every <, every outcome in 〈gM, <〉 is a Nash
equilibrium (no agent can change the outcome, let alone improve it). At the
same time, for all a∗ we have b = o(a∗) , P(<) = a, which shows that g
does not NE-implement P. It does also not truthfully NE-implement it: take,
for any <, a profile a∗ in the game 〈gM, <〉 such that a∗ = <. We have already
seen that o(a∗) , P(<), which proves our claim.
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[a, b] [b, a] [a, b] [b, a]

[a, b]

[b, a]

[a, b]

[b, a]

[a, b]

[b, a]

[a, b] [b, a] [a, b] [b, a]

[a, b]

[b, a]

a

bb b b

a a

b b

aaaa

b b
� � �

�
a

d d

dd

〈gJ
−, ([a, b], [a, b])〉 〈gJ

−, ([a, b], [b, a])〉

〈gJ
−, ([b, a], [b, a])〉〈gJ

−, ([b, a], [a, b])〉

��

�
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Figure 5. gJ
− NE-implements J but does not truthfully NE-implement it.

3. A Logic of social choice functions

Following the tradition in implementation theory (cf. Remark 1), we model
social choice functions as a particular kind of strategic game form. In (Tro-
quard et al., 2009a) we proposed a logic for modelling strategic games on the
basis of CL-PC. Every player controls a set of propositional variables and a
strategy for a player amounts to choosing a truth value for the variables he
controls. We adapt the ideas of (Troquard et al., 2009a) to game forms where
the strategies of the players correspond to the reports of preferences.

3.1. S

Let X be an arbitrary set of propositions. We can see a valuation of X as a
subset V ⊆ X where tt (i.e., true) is assigned to the propositions in V and ff
(false) is assigned to the propositions in X \ V . We denote the set of possible
valuations over X by ΘX .

In the presence of a set of players N and a set of outcomes K, the set of
propositions controlled by a player i ∈ N is defined as At[i,K] = {pi

x>y | x, y ∈
K}. Every pi

x>y is a proposition controlled by the agent i which means that
i reports that it values the outcome x at least as good as y. We also define
At[N,K] = ∪i∈NAt[i,K], which is then the set of all controlled propositions.

We can ‘encode’ a particular preference (or linear order) of player i as a
valuation of the propositions in At[i,K]. However, conversely, not all valua-
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tions correspond to a linear order preference. A strategy of a player i consists
of reporting a valuation of At[i,K] encoding a linear order over K. For every
player i, we define strategies[i,K] as a set of valuations V ∈ ΘAt[i,K] such that:
(i) pi

x>x ∈ V , (ii) if x , y then pi
x>y ∈ V iff pi

y>x < V , and (iii) if pi
x>y ∈ V and

pi
y>z ∈ V then pi

x>z ∈ V .

REMARK 2. Every pi
x>y could be seen as a predicative expression p(i, x, y)

that would read that agent i reported to prefer the outcome x over y. However,
since N and K are finite, we look at these expressions as a finite collection of
propositions. The constraints of control in Figure 6 will be their propositional
theory corresponding to the three preceding constraints on the valuations.

For every coalition C ⊆ N, let strategies[C,K] be the set of tuples vC =

(vi)i∈C where vi ∈ strategies[i,K]. It is the set of strategies of the coalition
C. To put it another way, it corresponds to a valuation of the propositions
controlled by the players in C, encoding one preference over K for every
player in C.

A state (or reported preference profile) is an element of strategies[N,K],
that is, a strategy of the coalition containing all the players. We now define
the models of social choice functions.

DEFINITION 8. (Model of social choice functions). A model of social choice
functions over N and K is a tuple M = 〈N,K, out, (<i)〉, such that:

out : strategies[N,K] −→ K maps every state to an outcome;
For every i ∈ N, <i ∈ L(K) is the true order of preferences of i.

Hence, every player i has two levels of preferences: (i) a true one, given
by (<i) and (2) a reported one, given by a valuation in strategies[i,K].

Taking out the true preference profile from a model of SCF, we obtain
a mere instantiation of a pre-Boolean game (Bonzon et al., 2007). It is re-
quired to assign every variable to one (actual control) and only one (exclusive
control) player, but there are some constraints on the possible valuations
(‘non-full’ control). In (Bonzon et al., 2007), actual and exclusive control are
grasped by an assignment function (mapping every propositional variable to
exactly one player), and the partial control is modelled by a set of constraints
given as a set of satisfiable propositional formulae.

The languageLscf [N,K] is inductively defined by the following grammar:

ϕ F > | p | x | ¬ϕ | ϕ ∨ ϕ | ^Cϕ | _iϕ

where p is atom of At[N,K], x is an atom of K, i ∈ N, and C is a coalition.
Given a model M and a state (i.e., a reported profile v), formula ^Cϕ reads
that provided that the players outside C hold on to their current strategy vC,
the coalition C has a strategy, i.e., a way to announce their profiles, such
that ϕ holds. Formula _iϕ reads that i locally (at the current reported profile)
considers a reported profile where ϕ is true at least as preferable.
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DEFINITION 9. (Truth values of Lscf [N,K]). Given a model M = 〈N,K, out,
(<i)〉, we are going to interpret formulae ofLscf [N,K] in a state of the model.
A state v = (v1, . . . , vn) in M is a tuple of valuations vi ∈ strategies[i,K], one
for each agent. The truth definition is inductively given by:

M, v |= p iff p ∈ vi for some i ∈ N
M, v |= x iff out(v) = x
M, v |= ¬ϕ iff M, v 6|= ϕ

M, v |= ϕ ∨ ψ iff M, v |= ϕ or M, v |= ψ

M, v |= ^Cϕ iff there is a state u such that
vi = ui for every i < C and M, u |= ϕ

M, v |= _iϕ iff there is a state u such that
out(v) <i out(u) and M, u |= ϕ

We assume that player i only makes claims or announcements about its
own preferences, and i controls nothing else, so the atomic clause could
equivalently have read

M, v |= pi
x>y iff pi

x>y ∈ vi

The truth of ϕ in all models over a set of players N and a set of outcomes
K is denoted by |=Λscf [N,K] ϕ. The classical operators ∧,→,↔ can be defined
as usual. We also define �Cϕ , ¬^C¬ϕ and �iϕ , ¬_i¬ϕ.

THEOREM 1. (Decidability). The problem of deciding whether a formula
ϕ ∈ Lscf [N,K] is satisfiable is decidable.

Proof. It suffices to remark that N and K are finite. Hence, we can enumer-
ate every model of SCF over N and K and check whether ϕ is satisfiable in
one state of one model.

�

3.2. B

We think of a particular preference of L(K) encoded in the language of the
propositions as a ballot.

DEFINITION 10. (Ballot). For every player i ∈ N, we can see every <i ∈

L(K) as a permutation [x1, x2 . . .] of the elements of K, where the more to the
left the outcome is, the more it is preferred by the player i. We can reify in the
language the reported preferences, that is, the ballot casted by the player i:

balloti(<) , pi
x1>x2

∧ pi
x2>x3

∧ . . . pi
x|K|−1>x|K| .
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Reasoning about Social Choice Functions 13

Then, the formula
ballot(<) ,

∧
i∈N

balloti(<)

is a reification of the reported preference profile < = (<1, . . . , <n), consisting
of one ballot for every player i ∈ N.

REMARK 3. Note that for every < ∈ L(K), the formula ballot(<) is true at
one and only one state. The reader familiar with Hybrid Logic (Areces and
ten Cate, 2006) may think of the formula ballot(<) as a nominal, viz. a state
label available in the object language.

EXAMPLE 2. Suppose that N = {1, 2} and K = {a, b, c}. Let a prefer-
ence profile (<ex

1 , <
ex
2 ) ∈ L(K)N given by the data of the two permutations

[a, c, b] and [c, a, b] representing respectively the preferences of player 1
and 2. This reported preference profile can be represented in the language
Lscf [{1, 2}, {a, b, c}] by the formula

ballot(<ex) , p1
a>c ∧ p1

c>b ∧ p2
c>a ∧ p2

a>b.

It is easy to verify that the constraints on the elements of strategies[1,K]
and strategies[2,K] are sufficient for inferring a complete characterisation
of the preference profile. The following is valid in the models of social choice
functions over {1, 2} and {a, b, c}:

ballot(<ex) ↔ p1
a>a∧p1

b>b∧p1
c>c∧p1

a>c∧p1
c>b∧p1

a>b∧¬p1
c>a∧¬p1

b>c∧¬p1
b>a∧

p2
a>a∧p2

b>b∧p2
c>c∧p2

c>a∧p2
a>b∧p2

c>b∧¬p2
a>c∧¬p2

b>a∧¬p2
b>c

3.3. C  SCF

Recall that a model of social choice functions is a tuple M = 〈N,K, out, (<i)〉,
where <i are the real preferences of the agents and the outcome function o
assigns to every valuation an element of K. There is a one-one correspon-
dence between valuations and preference profiles: the preference profile P(v)
associated with valuation v is the relation < for which x >i y iff pi

x>y ∈ v.
Likewise, the valuation V(<) associated with < is the set {pi

x>y | x >i y},
which collect all the atoms form ballot(<). This makes it possible to relate a
model M with a social choice function F as follows.

We say that a model M = 〈N,K, out, (<i)〉 and social choice function F :
L(K)N → K correspond, if for every strategy profile < and its associated
valuation v (i.e., for which V(<) = v and P(v) =<), we have o(v) = F(<).

This correspondence can be syntactically defined in a formula ρF:
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14 Troquard, van der Hoek, and Wooldridge

ρF =
∧

<∈L(K)N

^N(ballot(<) ∧ F(<))

Note that ^N plays the role of the universal/global existential modality
often noted E in the literature in modal logic: it allows us to quantify over all
the possible valuations in ΘAt[N,K], or ballots.

Given the outcomes K, the agents N and the social choice function F,
formula ρF says that every profile < together with F(<) as an outcome appears
in the model. Since the states of a model are all possible profiles in L(K)N ,
and every profile occurs exactly once, we might as well have defined ρF as

ρF =
∧

<∈L(K)N

(ballot(<)→ F(<))

It is easy to see that the logic is expressively complete wrt. social choice
functions. That is, for every SCF F over a set of players N and a set of
outcomes K, there exists a formula ρF ∈ Lscf [N,K] characterising it. Even
though it may not be optimal in terms of succinctness, it suffices to consider
the conjuncts of formulae ^N(ballot(<) ∧ x), for < ∈ L(K) and F(<) = x. The
next example shows, using a simple scenario, that we can sometimes obtain
less naı̈ve and more compact characterisations.

EXAMPLE 3. Consider the following model of SCF (or game form) where
player 1 chooses rows, player 2 chooses columns and player 3 chooses matri-
ces. There are two outcomes a and b. Hence, every player i controls the set of
atoms {pi

a>a, p
i
b>b, p

i
a>b, p

i
b>a}. Every player i has two strategies: pi

a>a∧pi
b>b∧

pi
a>b ∧ ¬pi

b>a and pi
a>a ∧ pi

b>b ∧ ¬pi
a>b ∧ pi

b>a, that we denote respectively by
[a, b] and [b, a]. (In the logic Λscf [{1, 2, 3}, {a, b}], they are in fact equivalent
to the formulae pi

a>b and pi
b>a, respectively.)

[a, b]

a a

a b

[a, b] [b, a]

[a, b]

[b, a]

[b, a]

a

[a, b] [b, a]

[a, b]

[b, a] b

b

b

We can represent it in the logic Λscf [{1, 2, 3}, {a, b}] of social choice func-
tions by the formula:

ρF , a↔ (p1
a>b ∧ p2

a>b) ∨ (p1
a>b ∧ p3

a>b) ∨ (p2
a>b ∧ p3

a>b).

Note that since out is functional, in the models of social choice functions with
K = {a, b} the outcome b will hold whenever a does not.
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Reasoning about Social Choice Functions 15

Going back to the social choice functions of Example 1, we invite the
reader to check that

ρH = b↔ (p1
b>a ∧ p2

b>a)

ρJ = a↔ p1
a>b

ρP = a

3.4. T 

In Section 3.2 we saw how to use the atoms in At[i,K] to encode the reported
preference or ballot of a player i. These atoms do not necessarily represent
the true preferences of the agents. We handle the true preferences of player i
via the _i modality.

From our basic language Lscf [N,K], we can also define an operator of
interest concerning preferences. We can define the global binary operator of
preferences ψ Ji ϕ, corresponding to a preference between propositions. It
reads “all ϕ are better than all ψ”.

ψ Ji ϕ , �N

∨
< ∈L(K)N

(ballot(<) ∧ (ϕ→ �N(ψ→ _iballot(<)).

Agent i judges the proposition ϕ at least as good as ψ iff when the reported
preference profile is < and ϕ holds at the state labeled by ballot(<), then,
whenever ψ holds in a state, i would prefer the state labeled by ballot(<) (cf.
Remark 3).

As in Definition 10 for reported preferences, we can now reify the true
preferences. Provided that x and y are two possible outcomes, the formula
y Ji x captures the fact the player i prefers (globally) the outcome y over
the outcome x. Hence, from a preference profile < ∈ L(K)N , we reify the
preference [x1, x2 . . .] of the player i as follows:

truei(<) , (x|K| Ji x|K|−1) ∧ . . . ∧ (x3 Ji x2) ∧ (x2 Ji x1).

Then, the formula
true(<) ,

∧
i∈N

truei(<)

is a reification of the true preference profile <= (<1, . . . , <n).

REMARK 4. Whenever in a model of social choice function M the true
preference of a player i is such that x <i y, then the formula x Ji y is true at
every state of M. However, the other way around does not hold. Indeed, when
either x or y is not a possible outcome of a model, the formula x Ji y is always
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16 Troquard, van der Hoek, and Wooldridge

true for every i. From the definition, x Ji y , �N
∨
< ∈L(K)N (ballot(<) ∧ (y →

�N(x → _iballot(<)). Hence, if y is not a possible outcome, the main im-
plication y → �N(x → _iballot(<)) is always true for y being always false.
Likewise, if x is not a possible outcome, the implication x → _iballot(<) is
always true for x being always false. In turn, it makes the main implication
always true. Also,

∨
< ∈L(K)N ballot(<) will always be satisfied since a state of

evaluation represents a ballot by definition.
The object language does not allow to talk about true preferences on

impossible outcomes. This observation will have a consequence in the way
we prove the completeness of the logic.

3.5. A

The axiomatization of the models of social choice functions is presented in
Figure 6.

Constraints of control (refl), (antisym-total) and (trans) say that every
player casts an appropriate valuation of its controlled atoms: a valuation must
encode a linear order. (comp∪) defines the local ability of coalitions in terms
of local abilities of sub-coalitions. The transitivity of the operator �C is the
consequence of (comp∪). Hence, together with (T(i)) and (B(i)), it makes of
�C an S5 modality. (empty) means that the empty coalition has no power.
(comp∪) and (confl) together make sure that the agents’ choices are indepen-
dent. (exclu) means that if an atom is controlled by a player i, the other players
cannot change its value. (ballot) makes sure that an agent is always locally
able to cast any preference. From (comp-At), provided that δ1 and δ2 do not
contain a commonly controlled atom, if a coalition C1 can locally enforce δ1
and C2 can locally enforce δ2 then they can enforce δ1 ∧ δ2 together.

Axiom (func1) forces the fact that for every action profile there is one and
only one outcome. (func2) ensures that the outcomes are only determined
by the valuations. (incl) ensures that if something is settled, a player cannot
prefer its negation. (4(�i)) characterises transitivity. (antisym′) and (total′)
force that the relation of preference over states is antisymmetric and total (and
hence, in particular, this relation is reflexive). Finally, (unifPref ) specifies a
fundamental interaction between preferences and the outcomes. If the casted
preference profile at hand leads to x and agent i prefers an action profile
leading to y, then at every action profile leading to x, agent i will prefer every
action profile leading to y, that is, all y are better than all x.

The logic has a clear flavour of normal modal logic (Chellas, 1980). The
presence of (K(i)) with the necessitation rule (Nec(�i)) gives to the operator
�i the property of normality. The necessitation rule for the operator �i holds
because of (Nec(�i)) and the axioms (comp∪) and (incl). The normality of
the modality �i then follows from (K(<i)).
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Reasoning about Social Choice Functions 17

Constraints of control
(refl) pi

x>x

(antisym-total) pi
x>y ↔ ¬pi

y>x , where x , y
(trans) pi

x>y ∧ pi
y>z → pi

x>z

Propositional control
(Prop) ϕ , where ϕ is a propositional tautology
(K(i)) �i(ϕ→ ψ)→ (�iϕ→ �iψ)
(T(i)) �iϕ→ ϕ

(B(i)) ϕ→ �i^iϕ

(comp∪) �C1�C2ϕ↔ �C1∪C2ϕ

(confl) ^i�jϕ→ �j^iϕ

(empty) �∅ϕ↔ ϕ

(exclu) (^ip ∧ ^i¬p)→ (�jp ∨ �j¬p) , where j , i
(ballot) ^iballoti(<)
(comp-At) ^C1δ1 ∧ ^C2δ2 → ^C1∪C2 (δ1 ∧ δ2)
Outcomes and preferences
(func1)

∨
x∈K(x ∧

∧
y∈K\{x} ¬y)

(func2) (ballot(<) ∧ ϕ)→ �N(ballot(<)→ ϕ)
(incl) �Nϕ→ �iϕ

(K(<i)) �i(ϕ→ ψ)→ (�iϕ→ �iψ)
(4(<i)) _i_iϕ→ _iϕ

(antisym′) (ballot(<) ∧ _iballot(<′)→ �N(ballot(<′)→ �i¬ballot(<)
(total′) (ballot(<) ∧ _iballot(<′) ∨ �N(ballot(<′)→ _iballot(<)
(unifPref ) (x ∧ _iy)→ (x Ji y)
Rules
(MP) from ` ϕ→ ψ and ` ϕ infer ` ψ
(Nec(�i)) from ` ϕ infer ` �iϕ

Figure 6. Logic of social choice functions Λscf [N,K]. i ranges over N, C1 and C2 over 2N , x
and y are over K, and < is over L(K)N . δ1 and δ2 are two formulae from Lscf [N,K] that do not
contain a common atom from At[N,K]. ϕ represents an arbitrary formula of Lscf [N,K], and p
an arbitrary atom in At[N,K].

The axiomatics is largely inspired by the axiomatics of the logic of games
and propositional control (henceforth LGPC) presented in (Troquard et al.,
2009a). The logic LGPC is designed to model strategic games in general.
The agents have arbitrary strategies, and preferences allowing for indifference
between two different outcomes. On the other hand, in this paper we focus on
SCFs and hence on particular strategic games that ‘represent’ an SCF (cf.
Remark 1).
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18 Troquard, van der Hoek, and Wooldridge

While in LGPC we had an axiom saying that every atom was actually
controlled by at least one agent, here we are more specific as we know a priori
which atoms are controlled by a given agent. This is the role of the axiom
(ballot). Constraints of controls are also specific to the present study. The
truth values of the controlled atoms cannot be independent of each other as
we use them to encode preferences. In LGPC, all valuations of the controlled
atoms were permitted.

THEOREM 2. (Soundness and completeness). Λscf [N,K] is sound and com-
plete with respect to the class of models of social choice functions.

Proof. The proof of completeness first gives an equivalent but more stan-
dard semantics to the logic: the Kripke models of SCF. Then we build the
canonical model. For every consistent formula ϕ, we show how to isolate a
sub-model Mϕ that we prove is a Kripke model of SCF that satisfies ϕ.

Further details are given in the Appendix.
�

4. Applications

We have already demonstrated that the language allows to completely char-
acterise an SCF. In this section we show how we can express properties of
social choice functions in the language and apply the logic to reason about
them.

The language can be used to characterise requirements on social choice
functions. We first illustrate that with some simple properties, namely citi-
zen sovereignty and non-dictatorship. Next, we will characterise a dominant
strategy equilibrium. Finally, we provide a formalisation of monotonicity and
strategy-proofness, and use standard results of SCT to show how we can use
the logic to check whether an SCF is implementable in a dominant strategy.

4.1. C    

We say that an SCF satisfies citizen sovereignty iff every outcome in K is
feasible. That is, no outcome is rejected independently of the individual opin-
ions. It is defined as follows.

DEFINITION 11. (Citizen sovereignty). An SCF F satisfies citizen sovereignty
iff for every x ∈ K there is a < ∈ L(K)N such that F(<) = x.

The next formula is a straightforward translation of the definition of citizen
sovereignty in the language of social choice functions.

CITSOV ,
∧
x∈K

^Nx.
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Reasoning about Social Choice Functions 19

We say that an SCF satisfies non dictatorship iff no player can always
impose its favourite outcome.

DEFINITION 12. (Non-dictatorship). An SCF F is non dictatorial iff for ev-
ery player i ∈ N there is a ballot < ∈ L(K)N such that F(<) <i y for some
y ∈ K \ {F(<)}.

This says that for every player, there is a ballot < whose outcome is F(<), and
i prefers an outcome that is not F(<).

We can rewrite the definition of non dictatorship into the language of
social choice functions as follows.

NODICT ,
∧
i∈N

^N

∨
x∈K

x ∧ ∨
y∈K\{x}

pi
y>x


 .

The following proposition is immediate.

PROPOSITION 1. Consider a social choice function F and ρF a formula
characterising it.

1. F has the property of citizen sovereignty iff |=Λscf [N,K] ρ
F → CITSOV.

2. F is non dictatorial iff |=Λscf [N,K] ρ
F → NODICT.

4.2. D  

Citizen sovereignty and non dictatorship are possible properties of a social
choice function: their formulations in logic are globally true (or false) in a
model of SCF. However, the logic is also able to formalise solution concepts,
which are properties of states. In (Troquard et al., 2009a), we characterised
several solution concepts (dominant strategy equilibrium, Nash equilibrium,
core membership. . . ) that are directly applicable in the logic of the present
work.

In order to formalise strategy-proofness later, we need to characterise a
dominant strategy equilibrium. A dominant strategy equilibrium captures a
particularly important pattern of behaviour. It arises when every player plays
a dominant strategy, that is, a strategy that would represent the best choice
whatever the other agents play. We define it directly in our models of SCF.

DEFINITION 13. (Dominant strategy equilibrium). Let v∗ be a state in a
model of social choice functions 〈N,K, out, (<i)〉. v∗ is a dominant strategy
equilibrium iff for every player i ∈ N and every strategy
uN\{i} ∈ strategies[N \ {i},K], we have out(u0 . . . u′i . . . un) <i
out(u0 . . . v∗i . . . un) for every u′i ∈ strategies[i,K].
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20 Troquard, van der Hoek, and Wooldridge

A dominant strategy equilibrium is a strong solution concept: such an
equilibrium does not depend on the knowledge of an agent i about the strate-
gies or preferences of other players.

It is convenient to introduce the notion of best response by an agent i.

BRi ,
∨
x∈K

(x ∧ �i_ix).

A player i plays a best response in a state if, x being the outcome, for every
deviation of i, i prefers x.

We can now define strategy dominance in terms of best response:

DOM ,
∧
i∈N

�N\{i}BRi.

We have a strategy dominant state if the current choice of every player ensures
them a best response whatever other agents do.

PROPOSITION 2. Assume a model of social choice functions M and a state
v∗. We have that v∗ is a dominant strategy equilibrium iff M, v∗ |= DOM.

4.3. M  -

One important property of SCF is monotonicity, as this property can affect
the implementability of social choice functions.

DEFINITION 14. (Monotonicity). An SCF F is monotonic iff for all {<, <′} ⊆
L(K)N and x ∈ K, if F(<) = x and if for all i ∈ N, for all y ∈ K we have that
that y <i x implies that y <′i x, then, F(<′) = x.

We propose to characterise monotonic social choice functions. We define

MON ,


∧
< ∈L(K)N

∧
<′ ∈L(K)N

∧
x∈K

[
^N(ballot(<) ∧ x)∧∧

i∈N
∧

y∈K
(
^N(ballot(<) ∧ pi

x>y)→
^N(ballot(<′) ∧ pi

x>y)
)
→ ^N(ballot(<′) ∧ x)

]
 .

Although it may appear rather complex, the predicate MON is essentially
nothing more than the expression of Definition 14 in our languageLscf [N,K].
The following proposition is immediate.

PROPOSITION 3. Consider a social choice function F and ρF a formula
characterising it. F is monotonic iff

|=Λscf [N,K] ρ
F → MON.
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Monotonicity does not depend on the true preference profile of the players.
Accordingly, our definition does not involve the modalities of preference _iϕ
and ϕ Ji ψ. Capitalising on standard results from social choice theory, we
will show that using the full expressivity of our language (that is, using true
preference modalities) we can obtain a much simpler formulation.

We say that an SCF is strategy-proof if for every preference profile, telling
the truth (reporting the true preference) is a dominant strategy for every player.

DEFINITION 15. (Strategy-proofness). An SCF F is strategy-proof iff F is
truthfully DOM-implementable.

Hence, a choice function is strategy-proof when it is truthfully implementable
in dominant strategy: for every preference profile, reporting their true prefer-
ence is a dominant strategy for every player.

The revelation principle (Gibbard, 1973) is a central result in implementa-
tion theory. It states that if an SCF is DOM-implementable, then it is truthfully
DOM-implementable. It is true in general even if L(K) is based on weaker
orders. The revelation principle tells us that if an SCF F is implementable in
dominant strategies then there exists a direct mechanism such that for every
preference profile <, truth telling (every player i reports <i) is a dominant
strategy and the outcome is F(<).

Truthful implementations are rather weak; it is easier in general to im-
plement a choice function truthfully than with ‘standard’ implementations.
Indeed, in truthful implementations there might be an equilibrium that leads
to an outcome different of the one prescribed by the SCF. But because in this
paper we consider linear preferences, and we assume that players cannot be
indifferent between two distinct outcomes, such a situation cannot happen.
Thus, we can be more specific than the revelation principle.

THEOREM 3. ((Dasgupta et al., 1979, Corollary 4.1.4)). A direct mechanism
g truthfully implements an SCF F in dominant strategies iff g DOM-implements
F.

Hence, when working in dominant strategies with linear preferences, the
concepts of implementation and truthful implementation coincide.

We propose to characterise strategy-proof social choice functions as fol-
lows:

STRPROOF ,
∧

< ∈L(K)N

[true(<)→ (ballot(<)→ DOM)]

The formula STRPROOF is an immediate reformulation of the definition
of strategy-proofness in our language of social choice functions.

PROPOSITION 4. Consider a social choice function F and ρF a formula
characterising it. F is strategy-proof iff

|=Λscf [N,K] ρ
F → STRPROOF.
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This Proposition provides us with a general procedure to check whether
a social choice function is strategy-proof. Moreover (because of Theorem 3),
because we restrict our attention to linear preferences, it allows us to check
whether an SCF is DOM-implementable.

EXAMPLE 4. We can verify for instance that the social choice function
characterised in Example 3 is strategy-proof.
|=Λscf [{1,2,3},{a,b}] (a↔ (p1

a>b ∧ p2
a>b) ∨ (p1

a>b ∧ p3
a>b) ∨ (p2

a>b ∧ p3
a>b))

→ STRPROOF.

Monotonicity sometimes implies implementability and this is actually the
case in our setting. Since we are working with rich domains of preferences1

and linear orderings the following result holds.

THEOREM 4. ((Dasgupta et al., 1979, Cor. 3.2.3, Th. 4.3.1)). An SCF is truth-
fully implementable in dominant strategies iff it is monotonic.

This standard result of implementation theory shows that in our setting,
the notions of monotonicity and of strategy-proofness match. Trivially we are
actually able to substantially simplify the formula MON, our characterisation
of monotonicity in the formal language. Indeed, as a consequence of Theorem
4, we have the following.

PROPOSITION 5.

|=Λscf [N,K] MON↔ STRPROOF.

5. Discussion and perspectives

We have presented the problem of direct implementation in social choice
theory and proposed a logical formalisation of it. We were able to give a
sound and complete axiomatization to the logic. We showed how we can
characterise social choice functions and properties of social choice functions.
And finally, we have demonstrated the value of the logic by proposing a
general logical procedure for checking whether a social choice function is
strategy-proof.

Our logical language is a formal counterpart of the language of “natural
mathematics” that is typically used in social choice theory. There are how-
ever two features that make it particularly useful: (i) it is supported by a non
ambiguous semantics; and (ii) the resulting logic is decidable.

1 The notion of a rich domain is some tangential to the purposes of this paper. Briefly, our
domain of preferences is rich because we allow every linear order of K. See (Dasgupta et al.,
1979, Sec. 3.1)
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Section 4 suggests a logical methodology for reasoning about problems of
social choice theory with the logic of social choice functions. Let a collection
of properties of social choice theory Pi, i ∈ {1, . . . n} be characterised in the
logic Λscf [N,K] by ρPi, respectively.

1. We can use the logic in order to check whether an SCF satisfies a certain
property. An SCF F characterised by ρF has the property P1 iff ρF → ρP1

is derivable in Λscf [N,K].

2. We can use the logic in order to evaluate the strength of constraints in
SCT. P1 is a property weaker than P2 iff the formula ρP2 → ρP1 is
derivable in Λscf [N,K]. For instance, instead of using a result of SCT
to prove Proposition 5, we could actually use the logic to automatically
verify that monotonicity and strategy-proofness coincide in the current
setting. More interestingly, we could use it to prove new theorems.

3. We can use the logic for mechanism design. Building a mechanism that
implements a social choice procedure satisfying the properties P1,P2, . . .
Pn consists of finding a model for the formula ρP1 ∧ ρP2 ∧ . . . ∧ ρPn.

We believe these are exciting possibilities for social choice theory and logic,
and as the logic is decidable, they are in principle possible.
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Proof of Theorem 2

Λscf [N,K] is sound and complete with respect to the class of models of social
choice functions.

Proof. It is routine to verify that all principles of Figure 6 are valid. We
show that if a formula is consistent, it is provable in the system Λscf [N,K].

We first introduce the Kripke models of SCF. A Kripke model of SCF is a
tuple M = 〈N,K, S, (Ri), (Pi),V〉 such that:

− N and K are parameters;
− S = {V ∈ ΘAt[N,K] | ∀i ∈ N,∃Vi ∈ strategies[i,K] s.t. V = ∪i∈NVi};
− V is a valuation function of At[N,K] ∪ K where for every v ∈ S:

• p ∈ V(v) iff p ∈ v, p ∈ At[N,K];
• there is a unique x ∈ K s.t. x ∈ V(v); [↪→ we say that the model is

based on the outcome function outM when outM(v) = x iff x ∈ V(v)].

− Rivu iff vj = uj for all j , i;
− there is a <M ∈ L(K)N s.t. Pivu iff (if x ∈ V(v) and y ∈ V(u) then x <M

i y);
[↪→ we say that the model is based on <M].
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Truth values of ^iϕ and _iϕ in a Kripke model of SCF are obtained in the
standard way from the relations Ri and Pi, respectively.

Clearly, for every Kripke model M based on outM and <M, we can con-
struct a model of social choice functions Mscf = 〈N,K, outM, (<M

i )〉 and
reciprocally.

By construction, there exists a bijection f : S −→ strategies[N,K] that
associates a state s in M to a state v = (v1 . . . vn) in Mscf in such a way that for
every p ∈ At[i,K], we have p ∈ V(s) iff p ∈ vi.

The following is easy to see.

CLAIM 1. M, s |= ϕ iff Mscf , f (s) |= ϕ.

Hence, the proof of the theorem can be reduced to a proof of completeness of
the logic wrt. to the class of Kripke models of SCF.

Let Ξ be the set of maximally consistent sets (mcs.) of Λscf [N,K]. We
define the proper canonical model Mcan = 〈N,K, S, (Ri), (Pi),V〉 as follows.
N and K are the parameters of the logic. S = Ξ. RiΓ∆ iff ∀δ ∈ ∆, ^iδ ∈ Γ.
PiΓ∆ iff ∀δ ∈ ∆, _iδ ∈ Γ. p ∈ V(Γ) iff p ∈ ∆. x ∈ V(Γ) iff x ∈ ∆.

Given an mcs. Γ0 we define the set of mcs. ‘describing’ the same SCF and
where the players have the same true preferences (modulo the preferences
concerning some outcome which is not feasible in the SCF):

Cluster(Γ0) , {Γ1 | ∀ < ∈ L(K)N ,∀x ∈ K,^N(ballot(<) ∧ x) ∈
Γ1 iff ^N(ballot(<)∧x) ∈ Γ0}∩{Γ2 | ∀i ∈ N,∀{x, y} ⊆
K, x Ji y ∈ Γ2 iff x Ji y ∈ Γ0}

Let ϕ be a consistent formula ofLscf [N,K]. There is an mcs. Γϕ s.t. ϕ ∈ Γϕ.
The proof consists in constructing a model from Γϕ such that it is indeed a
Kripke model of SCF and there is a state satisfying ϕ.

We define Mϕ = 〈N′,K′, S′,R′i ,P
′
i ,V
′〉 from Mcan as follows:

− N′ = N and K′ = K;
− S′ = Ξ|Cluster(Γϕ);
− R′i = Ri |Cluster(Γϕ);
− P′i = Pi |Cluster(Γϕ);
− p ∈ V ′(∆) iff p ∈ V(∆), ∆ ∈ S′.

It is immediate that the truth lemma holds.

CLAIM 2. Mϕ,Γ |= δ iff δ ∈ Γ.

Hence, Mϕ,Γϕ |= ϕ.
The set of states in Kripke models of SCF is defined as the set of valua-

tions of At[N,K] encoding a preference profile. We prove that there exists a
bijection between S′ and L(K)N .

CLAIM 3. The following statements are true:
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1. ∀∆ ∈ S′,∃! < ∈ L(K)N s.t. ballot(<) ∈ ∆;

2. ∀ < ∈ L(K)N ,∃!∆ ∈ S′ s.t. ballot(<) ∈ ∆.

The first part of the claim follows from the constraints of control (refl),
(antisym-total) and (trans). We now argue that for every < ∈ L(K)N , there
is exactly one ∆ ∈ S′ such that ballot(<) ∈ ∆. Let < ∈ L(K)N . We have
` ^iballoti(<) by (ballot). With (comp-At), we find that ` ^Nballot(<). Hence,
^Nballot(<) ∈ Γϕ, and there must be an mcs. ∆ s.t. ballot(<) ∈ ∆. Now
suppose that ∆′ ∈ S′ also contains ballot(<). By (func2), ∆ and ∆′ contain the
same formulae. Then ∆′ = ∆, which proves the second part of the claim.

As a consequence we will be allowed to use the formulae of the form
ballot(<) as world labels in Mϕ.

We now prove the main claim of this proof.

CLAIM 4. Mϕ is a Kripke model of SCF.

We first prove that for every mcs. Γ and ∆, we have that RiΓ∆ iff for all i , j
we have that ballotj(<) ∈ Γ iff ballotj(<) ∈ ∆.

First, observe that for every i, Ri is an equivalence relation because by
axioms (K(i)), (T(i)), (B(i)) and (comp∪) all �i are S5 modalities.

(⇒). Suppose RiΓ∆. Then by definition ∀δ ∈ ∆ we have ^iδ ∈ Γ. For
any < ∈ L(K)N and j , i, suppose also that ballotj(<) ∈ ∆. By (exclu),
�iballotj(<) ∈ ∆. Then by hypothesis ^i�iballotj(<) ∈ Γ, which by (B(i))
entails that ballotj(<) ∈ Γ. Because RiΓ∆ is an equivalence relation, the same
reasoning can be done to prove that if ballotj(<) ∈ Γ then ballotj(<) ∈ ∆.

(⇐). Suppose ∀j , i, ∀ < ∈ L(K)N we have ballotj(<) ∈ Γ iff ballotj(<) ∈
∆.

Suppose that balloti(<′) ∈ ∆ and δ ∈ ∆. Let us note <∆ the preference
profile (<1, . . . <

′
i . . . <n). We hence have ballot(<∆) ∧ δ ∈ ∆. Which by

(func2) means that �N(ballot(<)→ δ) ∈ ∆.
From (exclu), �i

∧
j,i ballotj(<) ∈ Γ. By (ballot), we also have that

^iballoti(<′) ∈ Γ. Hence, by S5, ^iballot(<∆) ∈ Γ.
We obtain that ^iδ ∈ Γ.
We now prove that there is a linear order < ∈ L(K)N such that PiΓ∆ iff (if

x ∈ V(Γ) and y ∈ V(∆) then x <i y). For every i ∈ N, we construct an order <◦i
over the set K◦ = {x ∈ K | ^Nx ∈ Γϕ} such that x <◦i y iff x Ji y ∈ Γϕ. (Note
that the reason we restrict the preliminary construction of the preference order
to the set of possible outcomes is because the language is not strong enough
to talk about impossible outcomes. See Remark 4. A careless construction
could lead to a relation over K that is not a linear order.)

Capitalising on (unifPref ), it is immediate that <◦i is transitive (4(<i)),
antisymmetric (antisym′) and total and reflexive (total′). Then <◦i is a linear
order over K◦.
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It is now easy to obtain a linear order <i over K such that for all x and y in
K◦ we have x <i y iff x <◦i y.

This completes the proof that Mϕ is a Kripke model of SCF.
Then, for every consistent formula ϕ, there is a Kripke model of SCF in

which ϕ is satisfied.
�
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