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Abstract. We present a logic for reasoning about choice. Choice CTL (C-CTL)
extends the well-known branching-time temporal logic CTL with choice modal-
ities, “3” and “2”. An example C-CTL formula is 3AFhappy , asserting that
there exists a choice that will lead to happiness. C-CTL is related to both STIT

logics and temporal cooperation logics such as ATL, but has a much simpler and
(we argue) more intuitive syntax and semantics. After presenting the logic, we
investigate the properties of the language. We characterise the complexity of the
C-CTL model checking problem, investigate some validities, and propose multi-
agent extensions to the logic.

1 Introduction

If we are interested in building autonomous agents, then we must surely be interested
in the notion of choice. After all, an autonomous agent is essentially a system that is
at liberty to make its own choices. It is not surprising, therefore, that choice features
prominently in formal studies of action and agency. For example, logics of “seeing to
it that” (“STIT”) have been used to formalise the notion of an agent choosing to bring
about some state of affairs [4, 14, 5, 19, 12, 9]; cooperation logics study the notion of
collective strategic choice [22, 2]; and deontic logics try to isolate “acceptable” choices
from “unacceptable” ones [32, 20]. The formalisms cited above have shed much light
on the notion of choice, and have contributed greatly to our understanding of the kinds
of languages and semantics that might be used to capture choice. However, none of the
above formalisms is without problems. For example, STIT logics are notoriously hard
for humans to understand; cooperation logics tend to have rather complex semantics,
and can also be hard for humans to understand, particularly when dealing with negated
cooperation modalities; and deontic logics remain fraught with philosophical difficul-
ties.

Our aim in the present paper is to develop a logic for reasoning about choices and
their consequences that is much simpler, both syntactically and semantically, than the
formalisms we cite above. We call the logic “Choice CTL” (C-CTL). As the name sug-
gests, C-CTL is an extension of the well-known branching-time temporal logic CTL [18].
C-CTL extends CTL with choice modalities, “3” and “2”. These modalities are used
to express the properties of choices available to an agent. A formula 3ϕ asserts that
the agent has a choice that will lead to ϕ being true, while 2ϕ means that no matter
what choice the agent makes, ϕ will be true. The specific interpretation that we give
to “choice” is that a choice represents a constraint on behaviour; crudely, the set of



choices available to an agent will be the set of all ways it can constrain its behaviour
(subject to certain simple coherence constraints, that will be described later). It may
seem strange to think of making choices as constraining behaviour, since intuitively,
choices seem to be positive things (“I will do this. . . ”), and constraints seem to be neg-
ative things (“I will not do this. . . ”). In fact, we argue that this reading of choice is quite
natural. For example, if I choose to work on my paper tonight, then I must exclude
other choices (going to a party, going to the cinema, watching TV). If I choose to vote
for one political party, then that excludes voting for another. If I choose to accept the
job offer from Stanford, then I cannot accept the offer from MIT; and so on. In C-CTL,
choice modalities can be combined with CTL operators. An example C-CTL formula is
3AFhappy , asserting that there exists a choice for the agent that will be guaranteed to
eventually lead to happiness4. C-CTL is related to both STIT logics and temporal coop-
eration logics such as ATL, but has a much simpler and (we argue) more intuitive syntax
and semantics.

2 Logics of Action, Choice, and Agency

Von Wright is generally considered to be the pioneer in the contemporary philosophy
of action. Over decades, he has developed an extended theory of action, treating the
notion of agency as a modality. That is, agency is seen as an intensional notion instead
of a mere referent in the language:

It would not be right, I think to call acts a kind or species of events. An act is
not a change in the world. But many acts may quite appropriately be described
as the bringing about or effecting (“at will”) of a change. To act is, in a sense,
to interfere with “the course of nature”. [31, p.36]

The formalisation of choice that we develop in this paper will be largely consistent with
this view of action.

While von Wright proposed a semi-formal semantics, we are looking for a logical
framework that allows us to specify a system involving acting agents, and hence support
the verification of such a system, for example via model checking [15]. Belnap et al.’s
STIT theory [5] is a philosophical account of action that is equipped with a very rich
and formal semantics. One key feature is that, (like Chellas [13] and von Kutschera [30]
before), STIT theory is based in a branching model of time. The notions of a history and
history contingency are central to the STIT view of agency. Belnap et al. illustrate this
with the following quote:

When Jones butters the toast, for example, the nature of his act, on this view, is
to constrain the history to be realized so that it must lie among those in which
he butters the toast. Of course, such an act still leaves room for a good deal
of variation in the future course of events, and so cannot determine a unique
history; but it does rule out all those histories in which he does not butter the
toast. [5, p.33] (emphasis added)

4 Alas, we do not necessarily know what that choice is.



Clearly, Belnap et al. see an act in similar ways as von Wright. Agency presupposes
agent-related indeterminism and an action is an interference with the course of nature.
The view of choice we present in this paper is founded directly on the idea that acting
is ruling out possible histories.

Also in common with von Wright and Belnap et al., we take the perspective that an
action is a modal notion. This is to be opposed to the ontological treatment of action. To
understand the ontological view, consider Davidson’s famous example of the statement
“John buttered the toast slowly with a knife”. We might formalise this statement in
predicate logic as follows:

∃e(butter(e, John, the toast) & slowly(e) & with a knife(e))

where e is a variable denoting an event, John and the toast are constants, and butter/3,
slowly/1, and with a knife/1 are predicates. Action sentences are then seen as de-
noting some logical combination of such relations.

Philosophers have developed an extensive literature in the ontology of action. In
contrast to the modal view, and as we have just exemplified, it is usual to take an action
to be a particular kind of event [16]. Also, it is assumed in linguistics that verbs denote
events [28] which can be categorized, and some relationship can exist between each
others [29]. What makes an entity an acting entity of an event is generally acknowl-
edged to be the intentionality in action. To be the agent of an event, one has to make a
rational decision governed by one’s beliefs and desires [3, 17]. Bratman [8] built upon
this idea, and proposed that intentions operate like a filter over every action in order to
select the actions that are desired and believed to be successful. For more on the subject,
Bennett’s [6] is an excellent monograph on the ontology of action. For an exploration of
the middle ground between the modal view of agency and ontological view on actions
see [25].

STIT logics represent probably the largest body of work on agentive action in the
philosophy literature [4]. In the earliest account of STIT, an agent is said to see to it that
ϕ if there has been a choice of his at a moment strictly in the past (the witness moment)
such that (1) this choice made sure that ϕ would be true at this instant, and (2) there is a
history that has been ruled out by this choice along which ϕ is false at this instant. From
the point of view of modal logic, this semantics is of course rather complex, and much
of the subsequent literature on the subject has been concerned with simplification. For
more recent developments, we refer the reader to [19, 24, 12, 21, 10, 9]. Although the
work cited above clearly has philosophical value, we argue that the STIT framework
remains rather opaque. Whilst the semantics of STIT has an undeniable explanatory
power to the notion of agency in branching-time, it seems very difficult to model real
world scenarios with it.

3 A Logic of Choice

Choice CTL (C-CTL) is based on the well-known branching time temporal logic CTL [18].
Recall that CTL allows one to express properties of branching-time temporal structures
by combining path quantifiers A (“on all paths. . . ”) and E (“on some path. . . ”) with



tense modalities X (“in the next state”), F (“eventually”), G (“always”), and U (“un-
til”). For example, the formula AG¬fail is a CTL formula expressing a system invari-
ant: on all computations starting from now, at all states on the computation, the system
will not enter a “fail” state. The formula EFhappy expresses a reachability property:
there is a possible computation of the system, on which eventually, I am happy. Note
that in CTL, a temporal operator must be prefixed with a path quantifier.

C-CTL extends CTL with choice modalities: 3 and 2. A formula 3ϕ means “the
agent has a choice such that if it makes this choice, ϕ will hold”, while the formula 2ϕ
means “whatever choice the agent makes, ϕ will hold”. Notice that choice modalities
are unary, and the argument to a choice modality can be a CTL formula, or indeed a
formula containing choice modalities. So, for example, the formula 3AFhappy can be
read as asserting that “the agent can make a choice that will eventually lead to happi-
ness”, while the formula 2AGpoor can be read as meaning that “no matter what choice
the agent makes, it will always be poor”. To be slightly more precise, a choice formula
3ϕ asserts that the agent can constrain its behaviour in such a way that ϕ holds, while
2ϕ means no matter how the agent constrains its behaviour, ϕ will hold.

Starting from a set Φ of Boolean variables, the syntax of C-CTL is defined by the
following grammar:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | 3ϕ | EXϕ | E(ϕUϕ) | AXϕ | A(ϕUϕ)

where p ∈ Φ. Formulas built from >, p, negation and disjunction only are called ob-
jective formulas. Given the above operators, we can derive the remaining CTL temporal
operators as follows:

AFϕ ≡ A(>Uϕ) EFϕ ≡ E(>Uϕ)
AGϕ ≡ ¬EF¬ϕ EGϕ ≡ ¬AF¬ϕ

The box operator for choice is defined as a dual of the diamond choice operator in the
conventional way: 2ϕ ≡ ¬3¬ϕ.

The scenarios we model consist of a single agent inhabiting an environment. The
environment can be in any of a set S of possible states; states are assumed to be discrete,
and to keep things simple, we assume S is finite and non-empty. In any given state, the
agent is able to perform actions, which will cause a deterministic change in state. To
capture these actions, we use a transition relation, R ⊆ S ×S . The intended interpreta-
tion is that if (s, s ′) ∈ R then when the system is in state s , the agent can perform some
action that will transform the system into state s ′. Note that actions themselves are not
explicitly present in the semantics; it is straightforward to add actions to our models,
for example by labelling transitions (s, s ′) with the action that causes the transition. To
express properties of the system, we assume a finite set Φ = {p, q , . . .} of Boolean
variables. A valuation function V : S → 2Φ tells us which Boolean variables are true
in which states.

A Kripke structure, K, is then a triple K = (S ,R,V ) where S is a non-empty finite
set of states, R ⊆ S × S is a total5 binary relation on S , which we refer to as the
transition relation, and V : S → 2Φ labels each state with the set of Boolean variables
true in that state.

5 Totality here means that for every s ∈ S there is a t ∈ S such that (s, t) ∈ R.



A path, ρ, through a transition relation R, is an infinite sequence of states ρ =
(s0, s1, . . .) such that ∀u ∈ N, we have (su , su+1) ∈ R. If u ∈ N, then we denote by
ρ[u] the element indexed by u in ρ (thus ρ[0] denotes the first element, ρ[1] the second,
and so on). For a state s in a transition system M = (S ,R,V ) we say that a path ρ is a
s-path if ρ[0] = s . Let pathsR(s) denote the set of s-paths over R.

We now define a binary choice accessibility relation “w” over transition relations:
R w R′ will mean that “R′ is a possible choice given transition relation R”. Formally,
where R and R′ are transition relations over state set S , we write R w R′ to mean that:

1. R ⊇ R′; and
2. R and R′ are both total relations.

We will also write R′ v R for R w R′. Observe that the choice accessibility relation w
is both reflexive and transitive.

The satisfaction relation “|=” for C-CTL is defined between pointed structures K, s
(where K = (S ,R,V ) and s ∈ S ) and C-CTL formulas, as follows:

K, s |= 3ϕ iff ∃R′ such that s.t. R w R′ and (S ,R′,V ), s |= ϕ
K, s |= AXϕ iff ∀ρ ∈ pathsR(s) : K, ρ[1] |= ϕ
K, s |= EXϕ iff ∃ρ ∈ pathsR(s) : K, ρ[1] |= ϕ
K, s |= A(ϕUψ) iff ∀ρ ∈ pathsR(s),∃u ∈ N, s.t. K, ρ[u] |= ψ and ∀v , (0 ≤ v <

u) : K, ρ[v ] |= ϕ
K, s |= E(ϕUψ) iff ∃ρ ∈ pathsR(s),∃u ∈ N, s.t. K, ρ[u] |= ψ and ∀v , (0 ≤ v <

u) : K, ρ[v ] |= ϕ

and in a standard way for the propositional connectives. As usual, we write |= ϕ to
indicate that K, s |= ϕ for all pointed structures K, s .

Example 1. Consider the Kripke structureK displayed in Figure 1. In state s1, the agent
is at home (the atom h is true at s1). When going to work, our agent has three options:
he can first pick up a colleague (c) or his boss (b) before setting for the office, or he can
stop at a coffee shop with time for a warm chocolate first. In the latter case, he would be
selfish (s), in the first two cases, much more altruistic (a). Once work is finished, there
are two options: returning home or, alternatively, retire (r ).

The following statements are true in K, s1. Firstly, 3(AFa ∧ EG¬b): by leaving
the transition (s1, s4) out of the system, on all remaining paths the agent will eventually
be altruistic, without having to ever take his boss to work. Similarly, we have 3(AFa∧
3AFc): the agent can commit himself to always be altruistic, even in such a way that
he can later on commit himself further to always take his colleague. Finally note that
we have 3A(G¬r ∨ (h ∨ a ∨ w)Ur): there is a choice for the agent, so that in all
remaining branches, he either will never retire, or else he will always be either home,
or altruistic or at work until he retires.

Note, in K, s1 that it is unavoidable that the agent at least once goes to work: AFw .
One would expect that what is unavoidable is also true no matter which choice the agent
makes, and indeed we have 2AFw . However, the formula AFϕ → 2AFϕ is not a
validity as the following counterexample ϕ = EXr demonstrates in our model: in s1,
it is true that in all paths the agent has the choice to retire and ‘transit’ to state s6, (this
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Fig. 1. A simple work-office example.

is true even for the path s1, s3, s5, s1, s3, s5, s1, . . .), but it is not the case that, no matter
which choice the agent makes, EXr is true (the agent can choose a transition relation
that does not include (s5, s6)).

In a similar way, the formula 3EFϕ→ EFϕ is not a validity: it is not necessarily
the case that if there is a choice that guarantees that along some path, some property ϕ
is eventually true, then there should be a path where ϕ is eventually the case. Take ϕ
to be AXa . Indeed, in state s1, the agent can make a choice (leave out the transition
(s1, s4)) with the effect that on some path (like s1, s3, s5, s1), at some point (s1), in the
next state the agent is bound to be altruistic, i.e., M , s1 |= 3EFAXa . However, we
also have M , s1 |= ¬EFAXa: it is not the case that there is a path such that at some
point along it, the agent is bound to be altruistic: the agent has not committed himself
to anything yet!

The truth value of 3 allows the agent to restrict the current relation to any total sub-
relation. It might seem extreme at first sight to allow an agent to be able to restrict the
relation R to a mere function, hence associating deterministically a state to its successor.
This is however in perfect compatibility with the assumption that agents are the source
of indeterminism. And typically, agents can plan ahead for any state of the game. These
are for instance the common assumptions in game theory, where the future is completely
determined when all agents have made their choice. Our proposal is consistent with this
view: we will see in Section 5 that the multi-agent variation of our logic satisfies the
most common properties of logics for games and for social choice theory.

Before proceeding, we will consider the model checking problem for C-CTL [15].

MODEL CHECKING:
Instance: Kripke structure K = (S ,R,V ), state s ∈ S , and C-CTL formula ϕ.
Question: Is it the case that K, s |= ϕ?

The model checking problem for the underlying temporal logic CTL is P-complete [23];
however, adding choice modalities to the language complicates the decision problem
considerably:

Theorem 1. The MODEL CHECKING problem is PSPACE-complete.



4 Towards an Axiomatization

We are not in a position to offer a complete axiomatization of C-CTL at this point, and
the aim of this section is instead to show a number of validities which are candidates
for axioms. In addition, we point out some interesting properties of our language, which
give some indication of why a complete axiomatization is not easy to obtain.

By our observation that the choice relation w is reflexive and transitive, we imme-
diately get the following:

|= ϕ→ 3ϕ and |= 33ϕ→ 3ϕ (1)

The first validity of (1) expresses that if something is true in the current system based
on the transition relation R, the agent can make a choice (namely, R), such that ϕ. The
second validity expresses that a restriction of a restriction of R is a restriction of R. The
“dual” of the first validity of (1) is |= 2ϕ→ ϕ, i.e., the modal scheme T. The converse
of this scheme is obviously not true for all ϕ, but it does hold for purely propositional
formulae:

|= ψ → 2ψ if ψ is propositional (2)

As a property of choice, (2) makes perfect sense: choice interferes with the future, but
no choice can change the actual facts.

The properties of (1) make the operator 3 a KT4 operator [7], however, the fact
that we want (2) for objective formulas ϕ but not for arbitrary formulas, implies that
an axiomatization for C-CTL would not include the principle of uniform substitution: to
derive (2) for objective formulas, we would add the axioms p → 2p and ¬p → 2¬p
(atomic permanence) for p ∈ Φ, and not for arbitrary ϕ. (In fact, atomic permanence
follows from yet another axiom that we will discuss, and which only involves atoms,
Ax7).

How about the relation between the agent’s choices and possible futures, i.e., the
relation between 3 on the one hand, and E and A formulas on the other hand? As we
argued in Example 1, the formula 3EFϕ→ EFϕ is not a validity, the counterexample
for ϕ being an A formula. However, an example of a related formula that is valid is:

|= 3EFEGp → EFEGp (3)

The validity in (3) expresses that if the agent can make a choice such that, as a conse-
quence, there is a path such that at some time there is a path such that p is true along
the path, then there is a path where that consequence is already true.

The validity above reflects a property in first-order logic that universal formulas are
preserved when taking submodels and existential formulas are preserved under taking
supermodels. To formalise the validities we are after, we define two sublanguages of C-
CTL: the universal language Lu (with typical element µ), and the existential fragment
Le (typical element ε):

µ ::= > | ⊥ | p | ¬p | µ ∨ µ | µ ∧ µ | AXµ | AGµ | A(µUµ) | 2µ
ε ::= > | ⊥ | p | ¬p | ε ∨ ε | ε ∧ ε | EXε | EGε | E(εUε) | 3ε

The following theorem is a generalisation of [26].



Theorem 2. We have the following:

∀ε ∈ Le : |= 3ε→ ε and
∀µ ∈ Lu : |= µ→ 2µ.

Note that both (2) and (3) are instances of Theorem 2.
There are validities not captured by Theorem 2. Consider a modal logic with two

diamonds 31 and 32, each associated with an accessibility relation R1 and R2, re-
spectively. Now consider the scheme 3132p → 3231p. Semantically this expresses a
grid-like property

∀xyz ((x , y) ∈ R1 & (y , z ) ∈ R2 ⇒ ∃v(x , v) ∈ R2 & (v , z ) ∈ R1) (4)

Now, consider the two models M = (W ,R,V ) and M ′ = (W ,R′,V ) with R w R′

in Figure 2. The white-headed arrows denote a transition signalling that we are going
to interpret path-quantifiers with respect to R′, rather than to R. Call this relation R1.
Moreover, let R2 be the relation that specifies the path x , x1, x2, x3, . . .: this is a path
present in both M and M ′. Then it is immediately clear from Figure 2 that we have
the grid-like property 4. This then gives rise to the following, where ϕ is an arbitrary
formula:

x

x

x1

x1 x2
x3

x2
x3

Fig. 2. A model M = (S ,R,V ) (top) and M ′ = (S ,R′,V ) with R w R′.

|= 3EXϕ→ EX3ϕ

6|= 3EGϕ→ EG3ϕ (5)

A counterexample for the non-validity is obtained by ϕ = AXp and with R′ being a
restriction of R that such that ϕ currently holds under that restriction, but not under R
itself (i.e., there should be some path for which Xp is true, and some for which X¬p).



Another validity of C-CTL is the following

|= EXp → 3AXp (6)

The proof of (6) is simple: if we have (W ,R,V ), s |= EXp it means that there
is an s-path s, s1, s2, . . . so that (W ,R,V ), s1 |= p. Let R′ be obtained from R by
removing all transitions (s, t) from R for which t 6= s1: this has as an effect that all
paths based on R′ (which is still a total relation) from s have to go through s1, hence,
in all of those paths, Ep is true.

We already know that uniform substitution is not valid for C-CTL, so we cannot
expect EXϕ → 3AXϕ to be true for arbitrary ϕ. It is not difficult though to see that
the choice ϕ = EXp gives another validity: EXEXp → 3AXEXp.

But given those validities, it may come as a surprise that we have

6|= EXEXEXp → 3AXEXEXp

A simple demonstration of the displayed non-validity is provided in Figure 3: here,
in (S ,R,V ), s it holds that EXEXEXp (u is the only state where p is true). The
argument that demonstrates this, uses the states s , t and u . Now, suppose we would have
3AXEXEXp in s , then for some total subrelation R′ of R, we have (S ,R′,V ), s |=
AXEXEXp. We cannot take R′ = R, since AXEXEXp is not true in (S ,R,V ), s .
If R′ is such that (s, t) 6∈ R′, then AXEXEXϕ is only true for those ϕ that are true
in v , which excludes p. If (s, u) 6∈ R′, then no p state is reachable any longer, so
AXEXEXp does not hold in (W ,R′,V ), s . This demonstrates that for no choice R′

the formula AXEXEXp is true in s , so (W ,R,V ), s |= ¬3AXEXEXp. Loosely
formulated: in order to make 3AXEXEXp true in s , we need the transition (s, u) to
reach a p-state, but since paths through u continue only into ¬p-states, we would also
like to to get rid of the transition (s, u).

s

t

u

v s

st

su

stt

sts

suv suvv

stsu

sttt

Fig. 3. A model M and its unraveling M ′ (atom p is true in black states).

This brings an interesting aspect of our language to light. Call a model M =
(W ,R,V ) tree-like if R represents a tree. Then, it is easy to see that in such models,
we have (6) for arbitrary formulas ϕ, rather than p, since removing a transition from s
has no repercussions for successors of s . Given an arbitrary model M = (W ,R,V ),



one can define its unraveling M u = (W u ,Ru ,V u), a tree-like model in which all
possible paths from M are “unraveled”. Rather than giving the formal definition (see
[7, p. 63]), we refer to the model M ′ at the right hand side of 3, which is the unraveling
of the model M on the left.

Observation 1 Let M be a model and M ′ its unraveling.

1. For all 2-free formulas: M ,w |= ϕ iff M ′, s |= ϕ
2. Let M and M ′ be the models of Figure 3, and let ϕ be 3AXEXEXp. Then

M , s |= ¬ϕ, while M ′, s |= ϕ.

Since a model M and its unraveling M ′ are a special case of models that are bisimi-
lar, we have an argument for the non-modal behaviour of C-CTL, since modal languages
are invariant under bisimulations.

In fact, we can define a bisimulation-like notion for C-CTL:

Definition 1. Let K1 = (S1,R1,V1) and K2 = (S2,R2,V2) be two Kripke structures,
s1 ∈ S1 and s2 ∈ S2. We say that K1, s1 and K2, s2 match, written K1, s2 ∼ K2, s2, if
the following holds:

1. V1(s1) = V2(s2) (atomicity)
2. ∀t1 ∈ S1((s1, t1) ∈ R1 ⇒ ∃t2 ∈ S2 such that (s2, t2) ∈ R2 and K1, t1 ∼ K2, t2)

(CTL-forth)
3. ∀t2 ∈ S2((s2, t2) ∈ R2 ⇒ ∃t1 ∈ S1 such that (s1, t1) ∈ R1 and K1, t1 ∼ K2, t2)

(CTL-back)
4. For every R′

1 v R1 there is R′
2 v R2 such that (W1,R

′
1,V1), s1 ∼ (W2,R

′
2,V2), s2

(∆-forth)
5. For every R′

2 v R2 there is R′
1 v R1 such that (W1,R

′
1,V1), s1 ∼ (W2,R

′
2,V2), s2

(∆-back)

Figure 4 shows examples of three matching models Ki , si . We have:

s1 s2 s3

Fig. 4. Three matching models, assuming that all valuations agree.

Lemma 1. Suppose K1, s1 ∼ K2, s2 match. Then they agree on all C-CTL formulas.

In summary, an axiomatization for C-CTL (see Table 1) would need at least the
axioms of CTL [18], axioms Ax2–Ax4, which regulate the behaviour of the modality
2, and some mix axioms Ax5–Ax7.



CTL Axioms:
(Ax1) CTL tautologies

Choice Axioms:
(Ax2) 2(ϕ→ ψ)→ (2ϕ→ 2ψ)
(Ax3) 2ϕ→ ϕ
(Ax4) 2ϕ→ 22ϕ

Mix Axioms:
(Ax5) µ→ 2µ µ ∈ Lu

(Ax6) 3EXϕ→ EX3ϕ
(Ax7) EXp → 3AXp p ∈ Φ

Inference Rules:
(IR1) From ` ϕ and ` ϕ→ ψ infer ` ψ
(IR2) From ` ϕ infer ` AGϕ
(IR3) From ` ϕ infer ` 2ϕ

Table 1. Some axioms for C-CTL.

5 Multi-Agent Extensions

In this section, we show how C-CTL can be extended in a rather straightforward manner
to capture the choice of coalitions of agents. We should emphasise that we are not
concerned with agent’s motivations for action. We did not take into account the agent’s
intention in the logic of the individual choice of Section 3, and we are not going to
consider team attitudes in the multi-agent setting (see e.g., [33]). However, there is one
aspect of collective agency that we aspire to. It is the aspect of power of coalitions that
comes from social choice theory [1]. It has been translated in terms of modal logics
with coalition logic [22], in Alternating-time Temporal Logic [2], and by extension in
the STIT frameworks that embed them [12, 11].

C-CTL can naturally be extended to multi-agent settings. We assume a system is
populated by a set Ag = {1, . . . ,n} of agents, and that the actions available to each
agent i ∈ Ag are captured by an individual transition relation Ri ⊆ S × S . We refer
to a collection of transition relations R1, . . . ,Rn (where there is a transition relation
for each agent i ∈ Ag) as a collective transition relation. A Kripke structure is now
defined to be a tuple K = (S ,R1, . . . ,Rn ,V ) where S and V are as defined before,
and R1, . . . ,Rn is a collective transition relation. We extend the relation w defined
earlier for individual transition relations to coalitions, C , which are simply subsets of
agents C ⊆ Ag . We write

(R1, . . . ,Rn) wC (R′
1, . . . ,R

′
n)

to mean that:

1. ∀i ∈ C we have Ri w R′
i ; and



2. ∀j ∈ Ag \ C we have Rj = R′
j .

Given this definition, we can present the semantics of Multi-agent C-CTL (MC-CTL),
as follows – note that the rules defining the propositional connectives and the path
quantifiers remain unchanged, and we will not restate them.

K, s |= 〈C 〉ϕ iff ∃(R′
1, . . . ,R

′
n) such that s.t. (R1, . . . ,Rn) wC (R′

1, . . . ,R
′
n) and

(S , (R′
1, . . . ,R

′
n),V ), s |= ϕ

We define the dual [C ] of the collective choice modality in the standard way:

[C ]ϕ ≡ ¬〈C 〉¬ϕ.

There is a close connection between our operator of choice and the notion of brute
choice captured by the Chellas STIT. An agent sees to it that ϕ if given his current
choice, ϕ is true whatever the other agents do. A modality similar to the Chellas STIT
is then:

[C stit ]ϕ ≡ [Ag \ C ]ϕ

It is also straightforward to see that the vC relation is reflexive and transitive, and so
collective choice modalities satisfy the modal axioms K, T, and 4, as with individual
choice. We can define ATL-like cooperation modalities as abbreviations, as follows:

〈〈C 〉〉ϕ ≡ 〈C 〉[C stit ]ϕ

That is, C has the power to achieve ϕ, if there is a choice of C such that C sees to it
that ϕ. These constructions are not new and have been already used for example in [27].

We argue that this operator does indeed behave very much like the cooperation
modality in ATL/Coalition Logic CL. Table 2 shows some theorems of MC-CTL, which
are direct counterparts of CL axioms (see, e.g., [22, p. 54]).

They are the syntactic representation of some core principles of social choice theory
that regulate the powers of coalitions:

1. coalitions always have the power to achieve something;
2. if a coalition C1 has the power to achieve ϕ, then every super-coalition C2 ⊇ C1

has the power to achieve ϕ;
3. if a coalition C1 has the power to achieve ϕ and an independent coalition C2 has

the power to achieve ψ, then C1 and C2 have together the power to achieve ϕ ∧ ψ.

CL Axioms:
(MCCTL1) ¬〈〈Ag〉〉⊥
(MCCTL2) 〈〈C1〉〉ϕ→ 〈〈C2〉〉ϕ where C1 ⊆ C2

(MCCTL3) 〈〈C1〉〉ϕ ∧ 〈〈C2〉〉ψ → 〈〈C1 ∪ C2〉〉(ϕ ∧ ψ) where C1 ∩ C2 = ∅
Table 2. Pauly’s cooperation axioms hold for MC-CTL.

Let us consider a multi-agent example.



Example 2. Consider the system depicted in Figure 5. We have three agents Ag =
{1, 2, 3}. We call 1 and 2 the clients, and 3 the server. A resource is moved along: in
s , agent 3 can either pass the resource to 1 (leading to state t) or to 2 (state x ). For i
and j agents, an arrow labelled i : j denotes that i passes on the resource to j . If there
is no outgoing edge from a state for agent i , we assume his only option is to wait, i.e.,
we have not drawn reflexive arrows labelled i : w . In state t where 1 has the resource,
he can pass it back to 3 or he can choose to use it: the edge 1 : u denotes a transition
from t to u . Similarly for agent 2 in state x . To reason about this scenario, we use atoms
hi (agent i holds the resource), ui (agent i is using the resource) and bi (agent i has
benefited from the resource in the current cycle). Atom hi is true in any state with an
incoming arrow labelled j : i for some j , atom ui holds iff there is an incoming arrow
labelled i : u , and b1 is true in u, v ,w and q , while b2 is true in w , y , z , q . The black
filled states satisfy b1 ∧ b2.

s

t

u v

w

x

yz

q

1:3

3:1

1:u

1:2

2:u
1:3 2:3

2:3
3:2

2:3

2:u

2:1

1:u

1:3

1:3 2:3

Fig. 5. A simple multi-agent C-CTL system.

Assume the starting state is s . In K, s the following holds. First of all, the formula
〈〈1, 2, 3〉〉AGAF(b1 ∧ b2) does not hold: the grand coalition cannot constrain their
choices in such a way that both clients are guaranteed they will benefit infinitely often
from the resources. This is so because if no matter whether the system transits from s to
t or to x , there will be an agent (2 at t and 1 at x ) that has no choice but to generate a path
t , t , t , . . . or x , x , x , . . ., respectively. This shows that when we use the A quantifier, we
quantify over all paths that nature can possibly choose, given the current constraints. It
is easy to see that we do have: 〈〈1, 2, 3〉〉EGEF(b1 ∧ b2). We also have the following:
〈〈1, 3〉〉EF〈〈2〉〉A(h1Uh2). That is, 1 and 3 together can constrain themselves in such a
way that on some resulting path at some time it holds that 2 has a choice such that 1
holds the resource until 2 holds it. Note that agents have power to exclude each other



from the resource: 〈〈1, 3〉〉AG¬h2: agents 1 and 3 can constrain their actions in such a
way that 2 never holds the resource. What can 3 choose? He cannot on his own prevent
a client to hold the resource in the future, but he can determine the order in which they
receive it: 〈〈3〉〉AG(h2 → b1): the server 3 can organise his actions in such a way, that
in all resulting computations it holds that whenever 2 holds the resource, 1 has already
benefited from it. Also note that an agent i = 1, 2 can avoid using the resource, but
cannot avoid holding it: 〈〈i〉〉AG¬ui ∧ ¬〈〈i〉〉EG¬hi .

6 Conclusions

We have grounded in the philosophy of action the idea that choosing is to rule out some
courses of nature. We have then proceeded to present a logic C-CTL with one agent that
follows this idea, and considered multi-agent extensions. We have seen that the notion
of powers of agents and coalitions that it reflects is consistent with the theories one can
find in social choice theory. In contrast with the other logics of choice in the literature
based on branching-time models, our examples demonstrate the ease with which our
logic makes it possible to model quite complex systems of interacting agents.

One obvious development of this work would be a complete axiomatization, and
to characterise the complexity of the satisfiability problem. The connection to game
theoretic reasoning could be explored, and, related to this, an important extension of
C-CTL might be obtained by having ways to reason about the knowledge that agents
have about their choices, and that of others.
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