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Abstract
These are the accompanying notes to my presentation at the Schloss Dagstuhl

Seminar 11101.
In this talk, I will present a logic to reason about voting procedures, proposed

in a common work with W. van der Hoek and M. Wooldridge. I will discuss some
perspectives on its software implementation and try to assess its practicality. I will
also make a short demonstration of a prototype.
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1 Introduction
Typically, the agents are the voters and the consequences will be the candidates in
some election. We denote by L(K) the set of linear orders over K. (A linear order
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is a relation that is transitive, antisymmetric and total.) By using a linear order, we
are assuming the players cannot be indifferent between two different alternatives. A
relation of preference is a linear order. Given K and N, a preference profile < is a tuple
(<i)i∈N of preferences, where <i ∈ L(K) for every i. The set of preference profiles is
denoted by L(K)N .

Definition 1 (social choice function) Given K and N, a social choice function (SCF)
is a single-valued mapping from the set L(K)N of preference profiles into the set K of
outcomes.

For every preference profile, a social choice function describes the desirable conse-
quence (from the point of view of the designer).

Given a set of players N and a set of consequences K, a social choice function maps
a preference in L(K)N profile to a consequence in K.

2 The logic of social choice functions
In [6] (long version: [7]), we have introduced a logic for reasoning about social choice
functions. The logic is evaluated over models of social choice functions.

Let X be an arbitrary set of propositions. We can see a valuation of X as a sub-
set V ⊆ X where tt is assigned to the propositions in V and ff is assigned to the
propositions in X \ V . We denote the set of possible valuations over X by ΘX .

In presence of a set of players N and a set of consequences K, the set of propositions
controlled by a player i ∈ N is defined as At[i,K] = {pi

x>y | x, y ∈ K}. Every pi
x>y is

a proposition controlled by the agent i which means that i reports that it values the
consequence x at least as good as y. We also define At[N,K] = ∪i∈NAt[i,K], which is
then the set of all controlled propositions.

We can ‘encode’ a particular preference (or linear order) of player i as a valuation
of the propositions in At[i,K]. However, conversely, not all valuations correspond to
a linear order preference. A strategy of a player i consists of reporting a valuation of
At[i,K] encoding a linear order over K. For every player i, we define strategies[i,K]
as a set of valuations V ∈ ΘAt[i,K] such that: (1) pi

x>x ∈ V , (2) if x , y then pi
x>y ∈ V iff

pi
y>x < V , and (3) if pi

x>y ∈ V and pi
y>z ∈ V then pi

x>z ∈ V .
For every coalition C ⊆ N, we note strategies[C,K] the set of tuples vC = (vi)i∈C

where vi ∈ strategies[i,K]. It is the set of strategies of the coalition C. To put it another
way, it corresponds to a valuation of the propositions controlled by the players in C,
encoding one preference over K for every player in C.

A state (or reported preference profile) is an element of strategies[N,K], that is, a
strategy of the coalition containing all the players.

We now define the models of social choice functions.

Definition 2 (model of social choice functions) A model of social choice functions
over N and K (MSCF) is a tuple M = 〈N,K, out, (<i)〉, such that:

• N = {1, · · · , n} is a finite nonempty set of players;
• K is a finite nonempty set of consequences;
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• out is a of strategies[N,K] into K;
• For every i ∈ N, <i ∈ L(K) is the true preferences of i.

The language Lscf [N,K] is inductively defined by the following grammar:

ϕ F > | p | x | ¬ϕ | ϕ ∨ ϕ | ^Cϕ | _iϕ

where p is atom of At[N,K], x is an atom of K, i ∈ N, and C is a coalition. ^Cϕ reads
that provided that the players outside C hold on to their current strategy, the coalition
C has a strategy for ϕ. _iϕ reads that i locally (at the current state) prefers a reported
profile where ϕ is true.

Definition 3 (truth values in models of social choice functions) Given a model of SCF
M = 〈N,K, out, (<i)〉, we are going to interpret formulas of Lscf [N,K] in a state of the
model. A state v = (v1, · · · , vn) in M is a tuple of valuations vi ∈ strategies[i,K], one
for each agent. The truth definition is inductively given by:

M, v |= p iff p ∈ vi for some i ∈ N
M, v |= x iff out(v) = x
M, v |= ¬ϕ iff M, v 6|= ϕ
M, v |= ϕ ∨ ψ iff M, v |= ϕ or M, v |= ψ
M, v |= ^Cϕ iff there is a state u such that

vi = ui for every i < C and M, u |= ϕ
M, v |= _iϕ iff there is a state u such that

out(v) <i out(u) and M, u |= ϕ

The truth of ϕ in all models over a set of players N and a set of consequences K is
denoted by |=Λscf [N,K] ϕ. The classical operators ∧,→,↔ can be defined as usual. We
also define �Cϕ , ¬^C¬ϕ and �iϕ , ¬_i¬ϕ.

3 Game and social choice theoretical properties
In [5], we have proposed the formulation of several solution concepts in a logic of
games and propositional control (LGPC). The logic presented in the previous section
is in fact a particular logical theory of LGPC, that is, a conservative extension of LGPC.
Hence, we can reuse the definitions of [5] as such.

For instance we have the following formulations:

• i’s best response

BRi
def
=

∨
x∈K(x ∧ �i_ix)

• Nash equilibrium

NE def
=

∧
i∈N BRi

• Dominance equilibrium

DOM def
=

∧
i∈N �N\{i}BRi
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We can also capture interesting properties of social choice functions, for instance:

• Citizen sovereignty

CITSOV def
=

∧
x∈K ^Nx

• Non dictatorship

NODICT def
=

∧
i∈N ^N

(∨
x∈K

(
x ∧

∨
y∈K\{x} pi

y>x

))
• Strategy-proofness

STRPROOF def
=

∧
< ∈L(K)N [true(<)→ (ballot(<)→ DOM)]

true(<) is a reification of < as the true preference profile of the players, while ballot(<)
is a reification of < as the reported preference profile of the players. We refer to [7] for
details.

4 Model checking, satisfiability and synthesis

4.1 Model checking
The problem of model checking is the following.

Definition 4 (Model checking) The problem of model checking is defined as follows.
Instance: A model of social choice functions M a preference profile v, and a formula ϕ.
Answer: “Yes” if M, v |= ϕ. “No” otherwise.

We first show that model checking is PSPACE-complete.

Lemma 1 Model checking is PSPACE-hard.

P. We reduce QBF into the problem of model checking. Let a quantified Boolean
formula

Φ = ∃a1∀a2∃a3 · · ·Qmam · ϕ(a1, · · · , am)

where Qm is ∃ if m is odd and ∀ if m is even. Moreover, ϕ(a1, · · · , am) is a propositional
formula in conjunctive normal form (CNF).

We introduce a translation function .] that maps a propositional formula in CNF to
a formula of our logic. .] is recursively defined as follows:

a]i ::= pi
x>y

(¬ψ)] ::= ¬ψ]

(ϕ ∧ ψ)] ::= ϕ] ∧ ψ]

(ϕ ∨ ψ)] ::= ϕ] ∨ ψ]
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1. function eval(〈N,K, s, (<i)〉, v, ϕ) returns tt or ff
2. case ϕ ∈ At[N,K]: return ϕ ∈ v;
3. case ϕ ∈ K: return ϕ = out(v);
4. case ϕ = ¬ψ: return not eval(〈N,K, s, (<i)〉, v, ψ);
5. case ϕ = ψ1 ∨ ψ2: return eval(〈N,K, s, (<i)〉, v, ψ1) or

eval(〈N,K, s, (<i)〉, v, ψ2);
6. case ϕ = ^Cψ: for every v′c ∈ strategies[C,K] if eval(〈N,K, s, (<i)〉, (vC, v′C), ψ)

then return tt; return ff;
7. case ϕ = _iψ: for every v′ ∈ strategies[N,K] if out(v) <i out(v′)

and eval(〈N,K, s, (<i)〉, v′, ψ) then return tt; return ff;
8. end

Figure 1: Model checking

Now, we build an MSCF M = 〈{1, · · · ,m}, {x, y}, out, (<i)〉, where the value of out
and < has no importance.

Φ is satisfiable iff ^1�2^3 · · · {m} · [ϕ(a1, · · · , am)]] is satisfiable in M
where {m} is ^m if m is odd and �m otherwise. Note that the preference profile v where
the formula is true is not important: (i) ^1�2ψ ↔ ^N�2ψ is a theorem for every ψ
and (ii) a formula of the form ^Nψ is true at one preference profile iff it is true at every
preference profile.

It is readily checked that the transformation is polynomial because the outcome
function out in M is arbitrary. �

Proposition 1 Model checking is in PSPACE.

P. For every parameter, the function eval on Figure 1 terminates because every
recursive call is done with a strictly smaller formula. It is correct since it follows
the semantics of the logical operators. It requires no more than | ϕ | recursive calls.
Moreover, in every recursion, the for loops do not require to store the results of the eval
function. Hence, the algorithm runs in polynomial space. �

Corollary 1 Model checking against models of social choice functions is PSPACE-
complete.

4.2 Theorem proving, satisfiability and synthesis
We are going to assume that the set of consequences and the set of voters are fixed,
that is, the decision problems are indexed by K and N. Fixed sets of voters and con-
sequences has in general a positive effect on the decidability of the logics. (See for
instance [3].)

It might be quite limited for some applications. No result obtained with these pa-
rameters guarantees a priori that it will hold with K + 1 consequences or with N + 1
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voters. However, theorem proving in small domains has recently proven tremendously
promising.

In [4], Tang and Lin propose a methodology that appears to be rather general to
the computer-aided proofs of theorems in social choice theory. They show how to re-
prove several impossibility results. Their methodology is as follows. (i) They first
prove a double induction lemma on the number of voters and consequences. (ii) They
formalise the base case for 2 voters and 3 consequences in their logic. (iii) They finally
use a theorem prover to check whether the base case holds.

It appears that an interesting approach to proving theorems in social choice theory
is to reduce them to small base cases and use computers to conduct a search in these
smaller domains. Using the same methodology, Tang and Lin are able to prove a new
theorem related to Arrow’s theorem

Corollary 2 Theorem proving, satisfiability and synthesis are PSPACE-complete.

P. For satisfiability we guess (undeterministically) a model of size (| K |!)|N | which
is a (huge!) constant, independent of the input formula, and we model check it. For
synthesis, the model is the output. Hence, satisfiability and synthesis are in NPSPACE
= PSPACE. Then we also have that theorem proving is in CoPSPACE = PSPACE.

PSPACE-hardness of satisfiability and synthesis is obtained via the same reduction
as in the proof of Lemma 1: Φ is QBF-satisfiable iff ^1�2^3 · · · {m} · [ϕ(a1, · · · , am)]] is
satisfiable in the logic of social choice functions. Theorem proving is then CoPSPACE-
hard, hence PSPACE-hard, too. �

5 Practical model checking
An issue concerns the size of a description of a model of social choice function.

Models of social choice functions over N and K are not compact. The description
of the outcome function is in general of size exponential: There are (| K |!)|N | possible
preference profiles. It is particularly problematic when applying the logic to model
checking. The first step towards a practical solution to model checking is to represent
the models in a compact way.

5.1 Positional scoring rules
In this subsection, we make use of a restricted class of models that allows us to describe
a number of interesting social choice functions in a compact way: models of positional
scoring rules. The new models are just a matter of replacing the old outcome function
by a scoring vector.

In presence of a set of alternatives K = {1, · · · , k}, a scoring vector is a tuple s =

(s1, · · · , sk) where every si is a real, and we assume that s1 ≥ s2 ≥ · · · ≥ sk and s1 > sk.
Every player is supposed to have a particular preference which is a linear order over K.

Given a preference profile < over K, the consequence prescribed by the choice
rule is computed as follows. Every consequence is initially given a score of 0. Then,
for every player i ∈ N and every consequence x ∈ K, if x occupies the rank r in i’s
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preference <i, then one adds sr to the score of x. The consequence is then one among
the consequences that have a maximum score: we need to pick up just one of them. It
is usual to break ties by a fixed priority order on consequences [1].

The following example presents some well known voting procedures in the form of
a scoring vector.

Example 1 In presence of a set of consequences K = {1, · · · , k}:

Plurality : (1, 0, · · · , 0)
Veto : (1, · · · , 1, 0)
Borda : (k − 1, k − 2, · · · , 1, 0)

We now define the models of positional scoring rules.

Definition 5 (model of positional scoring rule) A model of positional scoring rule over
N and K (MPSR) is a tuple M = 〈N,K, s, (<i)〉, such that:

• N = {1, · · · , n} is a finite nonempty set of players;
• K is a finite nonempty set of consequences;
• s is a scoring vector over K;
• For every i ∈ N, <i ∈ L(K) is the true preferences of i.

We note s(v) the consequence in K selected by the score vector s for a preference
profile v. Computing the scores of every consequences can be done in time O(k · n).
Breaking ties is usually assumed to be computationally easy and we will assume so in
this note. It is then easy to compute s(v) for every v.

Lemma 2 For every preference profile v the complexity of computing s(v) is O(k · n)

Definition 6 (truth values in models of positional scoring rules) Given an MPSR M =

〈N,K, s, (<i)〉, we are going to interpret formulas of Lscf [N,K] in a state of the model.
A state v = (v1, · · · , vn) in M is a tuple of valuations vi ∈ strategies[i,K], one for each
agent. The truth definition is similar to definition 3 except for:

M, v |= x iff s(v) = x
M, v |= _iϕ iff there is a state u such that

s(v) <i s(u) and M, u |= ϕ

Corollary 3 The problem of model checking against a model of positional scoring
rules is PSPACE-complete.

P. Model checking against positional scoring rules can be done by a straightfor-
ward adaptation of the algorithm of Figure 1, replacing the out functions by functions
s. Because computing s is easy (Lemma 2), the problem is in PSPACE.

Hardness follows from Lemma 1. �

7



5.2 Generalised scoring rules
In [8], Xia and Conitzer introduce a class of social choice functions that they call
generalised scoring rules. They are compact representations of a large class of social
choice functions including positional scoring rules, STV, Copeland, etc.1

We present the generalised scoring rules, but do not enter into much details. We
do not include them either in the software implementation presented in the remaining
sections.

Let c ∈ N and let P = {P1, · · · ,Pq} be a partition of C = {1, · · · , c}.
For every a, b ∈ Rc, we say a and b are equivalent with respect to P, denoted a ≈P b,

if for any l ≤ q, any i, j ∈ Pl, we have ai ≥ aj iff bi ≥ bj.
We say that a function g is compatible with P if for any a, b ∈ Rc, if a ≈P b then

g(a) = g(b).

Definition 7 (generalised socring rules) Let f : L(K) −→ Rc and g : Rc −→ K. The
functions f and g determine the generalised scoring rule GS(f , g):

For every preference profile (v1, · · · , vn) ∈ L(K)N ,

GS(f , g)((v1, · · · , vn)) = g(Σn
1f (vi))

We now define the models of generalised scoring rules.

Definition 8 (model of generalised scoring rule) A model of generalised scoring rule
over N and K (MGSR) is a tuple M = 〈N,K, (c,P, f , g), (<i)〉, such that:

• N = {1, · · · , n} is a finite nonempty set of players;
• K is a finite nonempty set of consequences;
• c ∈ N;
• P is a partition of {1, · · · , c};
• f : L(K) −→ Rc;
• g : Rc −→ K;
• For every i ∈ N, <i ∈ L(K) is the true preferences of i.

Definition 9 (truth values in models of generalised scoring rules) Given an MGSR
M = 〈N,K, (c,P, f , g), (<i)〉, we are going to interpret formulas of Lscf [N,K] in a state
of the model. A state v = (v1, · · · , vn) in M is a tuple of valuations vi ∈ strategies[i,K],
one for each agent. The truth definition is similar to definition 3 except for:

M, v |= x iff GS(f , g)(v) = x
M, v |= _iϕ iff there is a state u such that

GS(f , g)(v) <i GS(f , g)(u) and M, u |= ϕ

We briefly comment on the complexity of model checking models of generalised
scoring rules

1Xia and Conitzer mention in the article that they are not aware of a commonly studied social choice
function that cannot be represented as a generalised scoring rule.
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The complexity of model checking the logic against models of generalised scoring
rules will depend on the complexity of computing GS(f , g). It can happen that it is easy
to compute. On the other side of the range, it can also happen that it is undecidable.
Given a function fun, we note M(fun) its complexity class.

Assuming that we have an oracle for solving GS in unit time, one can solve model
checking against a model of generalised scoring rule in polynomial space. That is,
model checking against a model of generalised scoring rule with function GS is in
PSPACEM(GS).

The problem is PSPACE-hard whatever the computational complexity of GS. Hence,
whenever M(GS) ⊆ PSPACE, we have that model checking against a generalised scor-
ing rule with function GS is PSPACE-complete (because PSPACEPSPACE = PSPACE).

In order to obtain a more interesting result, we might want to represent the mathe-
matical functions f and g as computational trees [2].

6 Implementation
We have made a Common Lisp implementation of a prototype for the logic of social
choice functions, using the models of positional scoring rules.

We adopted some convenient conventions. The set of players is represented by an
integer p and players then range from 0 to p−1. The set of consequences is represented
by an integer c and consequences then range from 0 to c − 1.

We assume that a formula is accepted by the following BNF:
F ::= (x) | (i (x x)) | (neg F) |

(and F F ...) | (or F F ...) | (diamond i F) |

(box i F) | (pospref i F) | (necpref i F)
where x is a consequence, i is a player.

Example 2 A formula characterising the states where player 1 reported preferring
consequence 0 over consequence 1, and where player 0 can change unilaterally its
strategy in a way to ensure the consequence 1 is given as follows:

(and (1 (0 1))
(diamond 0 (1)))

Example 3 A Nash equilibrium with two players and two consequences is represented
by the following formula:

(and
(or
(and (1) (box 1 (pospref 1 (1))))
(and (0) (box 1 (pospref 1 (0)))))
(or
(and (1) (box 0 (pospref 0 (1))))
(and (0) (box 0 (pospref 0 (0))))))

It is worth noting that formulas representing equilibria are of primary use, but can
be tedious to write at hand. For this reason, we have written a function
(init-gt p c) that generates the formulas ne and dom representing respectively a
Nash equilibrium and a dominance equilibrium for a number p of players and c conse-
quences.
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7 Example of execution
Load the program tools in the environment.2

[1]> (load ’scf.lisp)
;; Loading file scf.lisp ...
;; Loaded file scf.lisp
T

Define the social choice function scf32 over the set of players {0, 1, 2} and the set
of consequences {0, 1}. It is defined as the positional scoring rule (1, 0). In other words,
it is the plurality rule with two consequences.

[2]> (defvar scf32 (make-scf :players 3 :consequences 2 :scorerule ’(1 0)))
#S(SCF :PLAYERS 3 :CONSEQUENCES 2 :SCORERULE (1 0))

Define profile32 as the preference profile where player 0 prefers consequence 0
over consequence 1; player 1 prefers 1 over 0; player 2 prefers 0 over 1.

[3]> (defvar profile32 ’((0 1) (1 0) (0 1)))
((0 1) (1 0) (0 1))

Define the model of positional scoring rule mscf32 as the social choice function
scf32 with profile32 as the true preference profile.

[4]> (defvar mscf32 (make-model-scf :scfunc scf32 :prefprofile profile32))
#S(MODEL-SCF :SCFUNC #S(SCF :PLAYERS 3 :CONSEQUENCES 2 :SCORERULE (1 0))
:PREFPROFILE ((0 1) (1 0) (0 1)))

Initialise the solution concepts with 3 players and 2 consequences.

[5]> (init-gt 3 2)
T

Find the dominance equilibria on mscf32. The profile profile32 is the only
solution.

[6]> (solve dom mscf32)
(((0 1) (1 0) (0 1)))

Check that scf32 is strategy-proof.

[7]> (is-strategy-proof scf32)
T

Define the social choice function scf33 over the set of players {0, 1, 2} and the set
of consequences {0, 1, 2}. It is defined as the positional scoring rule (2, 1, 0). In other
words, it is the Borda rule with three consequences.

[8]> (defvar scf33 (make-scf :players 3 :consequences 3 :scorerule ’(2 1 0)))
#S(SCF :PLAYERS 3 :CONSEQUENCES 3 :SCORERULE (2 1 0))

Define profile33 as the preference profile where: 1 <0 0 <0 2, 0 <1 1 <1 2, and
2 <2 1 <2 0.

[9]> (defvar profile33 ’((2 0 1) (2 1 0) (0 1 2)))
((2 0 1) (2 1 0) (0 1 2))

Define the model of positional scoring rule mscf33 as the social choice function
scf33 with profile33 as the true preference profile.

[10]> (defvar mscf33 (make-model-scf :scfunc scf33 :prefprofile profile33))
#S(MODEL-SCF :SCFUNC #S(SCF :PLAYERS 3 :CONSEQUENCES 3 :SCORERULE (2 1 0))
:PREFPROFILE ((2 0 1) (2 1 0) (0 1 2)))

2This first instruction is for a clisp implementation of Common Lisp. It might differ for other implemen-
tations. However, the rest of the instructions should be completely compatible.
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Initialise the solution concepts with 3 players and 3 consequences.
[11]> (init-gt 3 3)
T

Model check the dominance equilibria on mscf33 at the profile profile33. It is
not a dominance equilibrium.
[12]> (model-check dom mscf33 profile33)
NIL

Model check the Nash equilibria on mscf33 at the profile profile33. It is a Nash
equilibrium.
[13]> (model-check ne mscf33 profile33)
T

Find the Nash equilibria on mscf33. We use the optional parameter t as the verbose
mode that prints the solutions on the fly.
[14]> (solve ne mscf33 t)

((2 1 0) (2 0 1) (2 1 0))
((2 1 0) (2 0 1) (2 0 1))
((2 1 0) (2 0 1) (1 2 0))
((2 1 0) (2 0 1) (1 0 2))
((2 1 0) (2 0 1) (0 2 1))
((2 1 0) (2 0 1) (0 1 2))
((2 0 1) (2 1 0) (2 1 0))
((2 0 1) (2 1 0) (2 0 1))
((2 0 1) (2 1 0) (1 2 0))
((2 0 1) (2 1 0) (1 0 2))
((2 0 1) (2 1 0) (0 2 1))
((2 0 1) (2 1 0) (0 1 2))
((1 2 0) (1 2 0) (1 2 0))
((1 2 0) (1 2 0) (1 0 2))
((1 2 0) (1 0 2) (1 2 0))
((1 0 2) (1 2 0) (1 2 0))
((1 0 2) (1 2 0) (1 0 2))
((0 2 1) (1 2 0) (0 1 2))
((0 2 1) (1 0 2) (0 2 1))
((0 2 1) (1 0 2) (0 1 2))
((0 2 1) (0 2 1) (0 2 1))
((0 2 1) (0 2 1) (0 1 2))
((0 2 1) (0 1 2) (0 2 1))
((0 2 1) (0 1 2) (0 1 2))
((0 1 2) (1 2 0) (0 1 2))
((0 1 2) (1 0 2) (0 2 1))
((0 1 2) (1 0 2) (0 1 2))
((0 1 2) (0 2 1) (0 2 1))
((0 1 2) (0 2 1) (0 1 2))
((0 1 2) (0 1 2) (0 2 1))
((0 1 2) (0 1 2) (0 1 2))
(((0 1 2) (0 1 2) (0 1 2)) ((0 1 2) (0 1 2) (0 2 1)) ((0 1 2) (0 2 1) (0 1 2))
((0 1 2) (0 2 1) (0 2 1)) ((0 1 2) (1 0 2) (0 1 2)) ((0 1 2) (1 0 2) (0 2 1))
((0 1 2) (1 2 0) (0 1 2)) ((0 2 1) (0 1 2) (0 1 2)) ((0 2 1) (0 1 2) (0 2 1))
((0 2 1) (0 2 1) (0 1 2)) ((0 2 1) (0 2 1) (0 2 1)) ((0 2 1) (1 0 2) (0 1 2))
((0 2 1) (1 0 2) (0 2 1)) ((0 2 1) (1 2 0) (0 1 2)) ((1 0 2) (1 2 0) (1 0 2))
((1 0 2) (1 2 0) (1 2 0)) ((1 2 0) (1 0 2) (1 2 0)) ((1 2 0) (1 2 0) (1 0 2))
((1 2 0) (1 2 0) (1 2 0)) ((2 0 1) (2 1 0) (0 1 2)) ((2 0 1) (2 1 0) (0 2 1))
((2 0 1) (2 1 0) (1 0 2)) ((2 0 1) (2 1 0) (1 2 0)) ((2 0 1) (2 1 0) (2 0 1))
((2 0 1) (2 1 0) (2 1 0)) ((2 1 0) (2 0 1) (0 1 2)) ((2 1 0) (2 0 1) (0 2 1))
((2 1 0) (2 0 1) (1 0 2)) ((2 1 0) (2 0 1) (1 2 0)) ((2 1 0) (2 0 1) (2 0 1))
((2 1 0) (2 0 1) (2 1 0)))

Find in mscf33 the Nash equilibria where player 1 prefers the consequence 2 over
the consequence 1.3 We don’t use the verbose mode.

3Some remarks specific to LISP are due. Note the use of a comma in the term ,ne to force the evaluation
of the formula representing a Nash equilibrium as initialised by (init-gt ...), that is, to expand the
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[15]> (solve ‘(and ,ne (1 (2 1))) mscf33)
(((0 1 2) (0 2 1) (0 1 2)) ((0 1 2) (0 2 1) (0 2 1)) ((0 2 1) (0 2 1) (0 1 2))
((0 2 1) (0 2 1) (0 2 1)) ((2 0 1) (2 1 0) (0 1 2)) ((2 0 1) (2 1 0) (0 2 1))
((2 0 1) (2 1 0) (1 0 2)) ((2 0 1) (2 1 0) (1 2 0)) ((2 0 1) (2 1 0) (2 0 1))
((2 0 1) (2 1 0) (2 1 0)) ((2 1 0) (2 0 1) (0 1 2)) ((2 1 0) (2 0 1) (0 2 1))
((2 1 0) (2 0 1) (1 0 2)) ((2 1 0) (2 0 1) (1 2 0)) ((2 1 0) (2 0 1) (2 0 1))
((2 1 0) (2 0 1) (2 1 0)))

We check that scf33 is not strategy-proof.

[16]> (is-strategy-proof scf33)
NIL
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